-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeatures.py
63 lines (58 loc) · 2.52 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import time
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import cupy as cp
def image_features(model, images, feature_shape, start_layer, end_layer, all_size=False, equal=False, cupy=False):
start = time.time()
features = []
with torch.no_grad():
input = images
for i in range(8):
input = model.features[i](input)
if input.shape[-1] != feature_shape:
output = F.interpolate(input, size=(feature_shape, feature_shape), mode="bilinear")
else:
output = input
if i in range(start_layer, end_layer):
if all_size or input.shape[-1] == feature_shape or (equal == False and input.shape[-1] >= feature_shape):
features.append(output)
features = torch.cat(features, dim=1)
features = features.permute(0, 2, 3, 1)
features = features.reshape(-1, features.shape[-1])
# print("Image features shape:", features.shape)
# print("image_features Finished in", time.time() - start, "seconds.")
if cupy:
return cp.asarray(features)
else:
return features.cpu().numpy()
# concatenate image features with previous prediction
def prob_features(features, y_prev_pred, prob_kernel_size, prev_feature_shape, feature_shape, prob_only=False, cupy=False):
start = time.time()
if cupy:
y_prev_pred = torch.as_tensor(y_prev_pred, device='cuda')
else:
y_prev_pred = torch.as_tensor(y_prev_pred)
y_prev_pred = y_prev_pred.reshape(-1, 1, prev_feature_shape, prev_feature_shape)
y_prev_pred = F.interpolate(y_prev_pred, size=(feature_shape, feature_shape), mode="bicubic")
prev_unfold = nn.Unfold(kernel_size=(prob_kernel_size, prob_kernel_size), padding=prob_kernel_size//2)
y_prev_pred = prev_unfold(y_prev_pred)
y_prev_pred = y_prev_pred.reshape(len(y_prev_pred), -1, feature_shape, feature_shape)
y_prev_pred = y_prev_pred.permute(0, 2, 3, 1)
y_prev_pred = y_prev_pred.reshape(-1, y_prev_pred.shape[-1])
if cupy:
y_prev_pred = cp.asarray(y_prev_pred)
else:
y_prev_pred = y_prev_pred.numpy()
# concat features
if prob_only:
X_train = y_prev_pred
else:
if cupy:
X_train = cp.concatenate([features, y_prev_pred], axis=1)
else:
X_train = np.concatenate([features, y_prev_pred], axis=1)
# print("Image + Prediction features shape:", X_train.shape)
# print("prob_features Finished in", time.time() - start, "seconds.")
return X_train