-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
261 lines (229 loc) · 10.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse
import logging
import os
import random
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from pathlib import Path
from torch import optim
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
import wandb
from evaluate import evaluate
from evaluate import evaluate_and_visualize
from unet import UNet
from utils.data_loading import BasicDataset, CarvanaDataset
from utils.dice_score import dice_loss
dir_img = Path('./data/imgs/')
dir_mask = Path('./data/masks/')
dir_checkpoint = Path('./checkpoints/')
def train_model(
model,
device,
train_set,
val_set,
epochs: int = 5,
batch_size: int = 1,
learning_rate: float = 1e-5,
save_checkpoint: bool = True,
img_scale: float = 0.5,
amp: bool = False,
weight_decay: float = 1e-8,
momentum: float = 0.999,
gradient_clipping: float = 1.0,
mask_values=None # Add this parameter
):
n_train = len(train_set)
n_val = len(val_set)
# 3. Create data loaders
loader_args = dict(batch_size=batch_size, num_workers=os.cpu_count(), pin_memory=True)
train_loader = DataLoader(train_set, shuffle=True, **loader_args)
val_loader = DataLoader(val_set, shuffle=False, drop_last=True, **loader_args)
# Initialize logging - remove val_percent from config
experiment = wandb.init(project='U-Net', resume='allow', anonymous='must')
experiment.config.update(
dict(epochs=epochs, batch_size=batch_size, learning_rate=learning_rate,
save_checkpoint=save_checkpoint, img_scale=img_scale, amp=amp)
)
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {learning_rate}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_checkpoint}
Device: {device.type}
Images scaling: {img_scale}
Mixed Precision: {amp}
''')
# 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for AMP
optimizer = optim.RMSprop(model.parameters(),
lr=learning_rate, weight_decay=weight_decay, momentum=momentum, foreach=True)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', patience=5) # goal: maximize Dice score
grad_scaler = torch.cuda.amp.GradScaler(enabled=amp)
criterion = nn.CrossEntropyLoss() if model.n_classes > 1 else nn.BCEWithLogitsLoss()
global_step = 0
# Add evaluation interval
eval_interval = 5 # Evaluate every 5 epochs
# 5. Begin training
for epoch in range(1, epochs + 1):
model.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch}/{epochs}', unit='img') as pbar:
for batch in train_loader:
images, true_masks = batch['image'], batch['mask']
assert images.shape[1] == model.n_channels, \
f'Network has been defined with {model.n_channels} input channels, ' \
f'but loaded images have {images.shape[1]} channels. Please check that ' \
'the images are loaded correctly.'
images = images.to(device=device, dtype=torch.float32, memory_format=torch.channels_last)
true_masks = true_masks.to(device=device, dtype=torch.long)
with torch.autocast(device.type if device.type != 'mps' else 'cpu', enabled=amp):
masks_pred = model(images)
if model.n_classes == 1:
loss = criterion(masks_pred.squeeze(1), true_masks.float())
loss += dice_loss(F.sigmoid(masks_pred.squeeze(1)), true_masks.float(), multiclass=False)
else:
loss = criterion(masks_pred, true_masks)
loss += dice_loss(
F.softmax(masks_pred, dim=1).float(),
F.one_hot(true_masks, model.n_classes).permute(0, 3, 1, 2).float(),
multiclass=True
)
optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(loss).backward()
grad_scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), gradient_clipping)
grad_scaler.step(optimizer)
grad_scaler.update()
pbar.update(images.shape[0])
global_step += 1
epoch_loss += loss.item()
experiment.log({
'train loss': loss.item(),
'step': global_step,
'epoch': epoch
})
pbar.set_postfix(**{'loss (batch)': loss.item()})
# Evaluation round
division_step = (n_train // (5 * batch_size))
if division_step > 0:
if global_step % division_step == 0:
histograms = {}
for tag, value in model.named_parameters():
tag = tag.replace('/', '.')
if not (torch.isinf(value) | torch.isnan(value)).any():
histograms['Weights/' + tag] = wandb.Histogram(value.data.cpu())
if not (torch.isinf(value.grad) | torch.isnan(value.grad)).any():
histograms['Gradients/' + tag] = wandb.Histogram(value.grad.data.cpu())
val_score = evaluate(model, val_loader, device, amp)
scheduler.step(val_score)
logging.info('Validation Dice score: {}'.format(val_score))
try:
experiment.log({
'learning rate': optimizer.param_groups[0]['lr'],
'validation Dice': val_score,
'images': wandb.Image(images[0].cpu()),
'masks': {
'true': wandb.Image(true_masks[0].float().cpu()),
'pred': wandb.Image(masks_pred.argmax(dim=1)[0].float().cpu()),
},
'step': global_step,
'epoch': epoch,
**histograms
})
except:
pass
# Evaluate periodically
if epoch % eval_interval == 0:
evaluate_and_visualize(
model=model,
dataloader=val_loader,
device=device,
epoch=epoch,
save_dir='eval_results'
)
if save_checkpoint:
Path(dir_checkpoint).mkdir(parents=True, exist_ok=True)
state_dict = model.state_dict()
state_dict['mask_values'] = mask_values # Use the passed parameter
torch.save(state_dict, str(dir_checkpoint / 'checkpoint_epoch{}.pth'.format(epoch)))
logging.info(f'Checkpoint {epoch} saved!')
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks')
parser.add_argument('--epochs', '-e', metavar='E', type=int, default=5, help='Number of epochs')
parser.add_argument('--batch-size', '-b', dest='batch_size', metavar='B', type=int, default=1, help='Batch size')
parser.add_argument('--learning-rate', '-l', metavar='LR', type=float, default=1e-5,
help='Learning rate', dest='lr')
parser.add_argument('--load', '-f', type=str, default=False, help='Load model from a .pth file')
parser.add_argument('--scale', '-s', type=float, default=0.5, help='Downscaling factor of the images')
parser.add_argument('--validation', '-v', type=float, dest='val', default=10.0,
help='Percent of the data that is used as validation (0-100)')
parser.add_argument('--amp', action='store_true', default=False, help='Use mixed precision')
parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling')
parser.add_argument('--classes', '-c', type=int, default=2, help='Number of classes')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
# Change here to adapt to your data
# n_channels=3 for RGB images
# n_classes is the number of probabilities you want to get per pixel
model = UNet(n_channels=3, n_classes=args.classes, bilinear=args.bilinear)
model = model.to(memory_format=torch.channels_last)
logging.info(f'Network:\n'
f'\t{model.n_channels} input channels\n'
f'\t{model.n_classes} output channels (classes)\n'
f'\t{"Bilinear" if model.bilinear else "Transposed conv"} upscaling')
if args.load:
state_dict = torch.load(args.load, map_location=device)
del state_dict['mask_values']
model.load_state_dict(state_dict)
logging.info(f'Model loaded from {args.load}')
# Create dataset
try:
dataset = CarvanaDataset(dir_img, dir_mask, args.scale)
except (AssertionError, RuntimeError, IndexError):
dataset = BasicDataset(dir_img, dir_mask, args.scale)
# Split into train / validation partitions
n_val = int(len(dataset) * args.val / 100)
n_train = len(dataset) - n_val
train_set, val_set = random_split(dataset, [n_train, n_val], generator=torch.Generator().manual_seed(0))
model.to(device=device)
try:
train_model(
model=model,
train_set=train_set,
val_set=val_set,
epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.lr,
device=device,
img_scale=args.scale,
val_percent=args.val / 100,
amp=args.amp
)
except torch.cuda.OutOfMemoryError:
logging.error('Detected OutOfMemoryError! '
'Enabling checkpointing to reduce memory usage, but this slows down training. '
'Consider enabling AMP (--amp) for fast and memory efficient training')
torch.cuda.empty_cache()
model.use_checkpointing()
train_model(
model=model,
train_set=train_set,
val_set=val_set,
epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.lr,
device=device,
img_scale=args.scale,
val_percent=args.val / 100,
amp=args.amp
)