-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathimage_demo.py
121 lines (104 loc) · 4.08 KB
/
image_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import argparse
from copy import deepcopy
import os
import pickle
import cv2
from matplotlib import pyplot as plt
import numpy as np
from PIL import Image
from handobjectdatasets.queries import TransQueries, BaseQueries
from handobjectdatasets.viz2d import visualize_joints_2d_cv2
from mano_train.exputils import argutils
from mano_train.netscripts.reload import reload_model
from mano_train.visualize import displaymano
from mano_train.demo.preprocess import prepare_input, preprocess_frame
def forward_pass_3d(model, input_image, pred_obj=True):
sample = {}
sample[TransQueries.images] = input_image
sample[BaseQueries.sides] = ["left"]
sample[TransQueries.joints3d] = input_image.new_ones((1, 21, 3)).float()
sample["root"] = "wrist"
if pred_obj:
sample[TransQueries.objpoints3d] = input_image.new_ones(
(1, 600, 3)
).float()
_, results, _ = model.forward(sample, no_loss=True)
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--resume",
type=str,
help="Path to checkpoint",
default="release_models/obman/checkpoint.pth.tar",
)
parser.add_argument(
"--image_path",
help="Path to image",
default="readme_assets/images/can.jpg",
)
parser.add_argument(
"--no_beta", action="store_true", help="Force shape to average"
)
args = parser.parse_args()
argutils.print_args(args)
checkpoint = os.path.dirname(args.resume)
with open(os.path.join(checkpoint, "opt.pkl"), "rb") as opt_f:
opts = pickle.load(opt_f)
# Initialize network
model = reload_model(args.resume, opts, no_beta=args.no_beta)
model.eval()
print(
"Input image is processed flipped and unflipped "
"(as left and right hand), both outputs are displayed"
)
# load faces of hand
with open("misc/mano/MANO_RIGHT.pkl", "rb") as p_f:
mano_right_data = pickle.load(p_f, encoding="latin1")
faces = mano_right_data["f"]
fig = plt.figure(figsize=(4, 4))
fig.clf()
frame = cv2.imread(args.image_path)
frame = preprocess_frame(frame)
input_image = prepare_input(frame)
img = Image.fromarray(frame.copy())
hand_crop = cv2.resize(np.array(img), (256, 256))
noflip_hand_image = prepare_input(hand_crop, flip_left_right=False)
flip_hand_image = prepare_input(hand_crop, flip_left_right=True)
noflip_output = forward_pass_3d(model, noflip_hand_image)
flip_output = forward_pass_3d(model, flip_hand_image)
flip_verts = flip_output["verts"].cpu().detach().numpy()[0]
noflip_verts = noflip_output["verts"].cpu().detach().numpy()[0]
ax = fig.add_subplot(2, 2, 2, projection="3d")
ax.title.set_text("flipped input")
displaymano.add_mesh(ax, flip_verts, faces, flip_x=True)
if "objpoints3d" in flip_output:
objverts = flip_output["objpoints3d"].cpu().detach().numpy()[0]
displaymano.add_mesh(
ax, objverts, flip_output["objfaces"], flip_x=True, c="r"
)
flip_inpimage = deepcopy(np.flip(hand_crop, axis=1))
if "joints2d" in flip_output:
joints2d = flip_output["joints2d"]
flip_inpimage = visualize_joints_2d_cv2(
flip_inpimage, joints2d.cpu().detach().numpy()[0]
)
ax = fig.add_subplot(2, 2, 1)
ax.imshow(np.flip(flip_inpimage[:, :, ::-1], axis=1))
ax = fig.add_subplot(2, 2, 4, projection="3d")
ax.title.set_text("unflipped input")
displaymano.add_mesh(ax, noflip_verts, faces, flip_x=True)
if "objpoints3d" in noflip_output:
objverts = noflip_output["objpoints3d"].cpu().detach().numpy()[0]
displaymano.add_mesh(
ax, objverts, noflip_output["objfaces"], flip_x=True, c="r"
)
noflip_inpimage = deepcopy(hand_crop)
if "joints2d" in flip_output:
joints2d = noflip_output["joints2d"]
noflip_inpimage = visualize_joints_2d_cv2(
noflip_inpimage, joints2d.cpu().detach().numpy()[0]
)
ax = fig.add_subplot(2, 2, 3)
ax.imshow(np.flip(noflip_inpimage[:, :, ::-1], axis=1))
plt.show()