-
Notifications
You must be signed in to change notification settings - Fork 124
/
Copy pathplot.py
212 lines (189 loc) · 7.42 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import csv
import matplotlib as mpl
mpl.use('Agg') # noqa
import matplotlib.pyplot as plt
import numpy as np
import argparse
from collections import defaultdict
from benchmark.datasets import DATASETS
from benchmark.algorithms.definitions import get_definitions
from benchmark.plotting.metrics import all_metrics as metrics
from benchmark.plotting.utils import (get_plot_label, compute_metrics,
create_linestyles, create_pointset)
from benchmark.results import (store_results, load_all_results,
get_unique_algorithms)
def create_plot(all_data, raw, x_scale, y_scale, xn, yn, fn_out, linestyles):
xm, ym = (metrics[xn], metrics[yn])
# Now generate each plot
handles = []
labels = []
plt.figure(figsize=(12, 9))
# Sorting by mean y-value helps aligning plots with labels
def mean_y(algo):
xs, ys, ls, axs, ays, als = create_pointset(all_data[algo], xn, yn)
return -np.log(np.array(ys)).mean()
# Find range for logit x-scale
min_x, max_x = 1, 0
for algo in sorted(all_data.keys(), key=mean_y):
xs, ys, ls, axs, ays, als = create_pointset(all_data[algo], xn, yn)
min_x = min([min_x]+[x for x in xs if x > 0])
max_x = max([max_x]+[x for x in xs if x < 1])
color, faded, linestyle, marker = linestyles[algo]
handle, = plt.plot(xs, ys, '-', label=algo, color=color,
ms=7, mew=3, lw=3, linestyle=linestyle,
marker=marker)
handles.append(handle)
if raw:
handle2, = plt.plot(axs, ays, '-', label=algo, color=faded,
ms=5, mew=2, lw=2, linestyle=linestyle,
marker=marker)
labels.append(algo)
ax = plt.gca()
ax.set_ylabel(ym['description'])
ax.set_xlabel(xm['description'])
# Custom scales of the type --x-scale a3
if x_scale[0] == 'a':
if x_scale[1:] == 'neurips23ood':
alpha = 3
else:
alpha = int(x_scale[1:])
fun = lambda x: 1-(1-x)**(1/alpha)
inv_fun = lambda x: 1-(1-x)**alpha
ax.set_xscale('function', functions=(fun, inv_fun))
if x_scale[1:] == 'neurips23ood':
xm['lim'] = (0.7, 0.97)
plt.xticks([0.7, 0.75, 0.8, 0.85, 0.9, 0.95])
elif alpha <= 3:
ticks = [inv_fun(x) for x in np.arange(0,1.2,.2)]
plt.xticks(ticks)
elif alpha > 3:
from matplotlib import ticker
ax.xaxis.set_major_formatter(ticker.LogitFormatter())
#plt.xticks(ticker.LogitLocator().tick_values(min_x, max_x))
plt.xticks([0, 1/2, 1-1e-1, 1-1e-2, 1-1e-3, 1-1e-4, 1])
# Other x-scales
else:
ax.set_xscale(x_scale)
ax.set_yscale(y_scale)
ax.set_title(get_plot_label(xm, ym))
box = plt.gca().get_position()
# plt.gca().set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(handles, labels, loc='center left',
bbox_to_anchor=(1, 0.5), prop={'size': 9})
plt.grid(visible=True, which='major', color='0.65', linestyle='-')
plt.setp(ax.get_xminorticklabels(), visible=True)
# Logit scale has to be a subset of (0,1)
if 'lim' in xm and x_scale != 'logit':
x0, x1 = xm['lim']
plt.xlim(max(x0,0), min(x1,1))
elif x_scale == 'logit':
plt.xlim(min_x, max_x)
if 'lim' in ym:
plt.ylim(ym['lim'])
# Workaround for bug https://github.com/matplotlib/matplotlib/issues/6789
ax.spines['bottom']._adjust_location()
plt.savefig(fn_out, bbox_inches='tight')
plt.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset',
metavar="DATASET",
required=True)
parser.add_argument(
'--count',
default=-1,
type=int)
parser.add_argument(
'--csv',
metavar='FILE',
help='use results from pre-computed CSV file',
)
parser.add_argument(
'--definitions',
metavar='FILE',
help='load algorithm definitions from FILE',
default='algos-2021.yaml')
parser.add_argument(
'--limit',
default=-1)
parser.add_argument(
'-o', '--output')
parser.add_argument(
'-x', '--x-axis',
help='Which metric to use on the X-axis',
choices=metrics.keys(),
default="k-nn")
parser.add_argument(
'-y', '--y-axis',
help='Which metric to use on the Y-axis',
choices=metrics.keys(),
default="qps")
parser.add_argument(
'-X', '--x-scale',
help='Scale to use when drawing the X-axis. Typically linear, logit or a2',
default='linear')
parser.add_argument(
'-Y', '--y-scale',
help='Scale to use when drawing the Y-axis',
choices=["linear", "log", "symlog", "logit"],
default='linear')
parser.add_argument(
'--raw',
help='Show raw results (not just Pareto frontier) in faded colours',
action='store_true')
parser.add_argument(
'--recompute',
help='Clears the cache and recomputes the metrics',
action='store_true')
parser.add_argument(
'--neurips23track',
choices=['filter', 'ood', 'sparse', 'streaming', 'none'],
default='none'
)
parser.add_argument(
'--private-query',
help='Use the private queries and ground truth',
action='store_true')
args = parser.parse_args()
if not args.output:
args.output = 'results/%s.png' % (args.dataset)
print('writing output to %s' % args.output)
dataset = DATASETS[args.dataset]()
if args.count == -1:
args.count = dataset.default_count()
if args.x_axis == "k-nn" and dataset.search_type() == "range":
args.x_axis = "ap"
count = int(args.count)
if not args.csv:
unique_algorithms = get_unique_algorithms()
results = load_all_results(args.dataset, count, neurips23track=args.neurips23track)
if args.private_query:
runs = compute_metrics(dataset.get_private_groundtruth(k=args.count),
results, args.x_axis, args.y_axis, args.recompute)
else:
runs = compute_metrics(dataset.get_groundtruth(k=args.count),
results, args.x_axis, args.y_axis, args.recompute)
else:
with open(args.csv) as csvfile:
reader = csv.DictReader(csvfile)
data = [row for row in reader if row['dataset'] == args.dataset and
row['track'] == args.neurips23track]
runs = defaultdict(list)
for result in data:
# we store a single quality metric in the csv file
x_axis = args.x_axis
if x_axis == 'k-nn' or x_axis == 'ap':
x_axis='recall/ap'
y_axis = args.y_axis
if y_axis == 'k-nn' or y_axis == 'ap':
y_axis='recall/ap'
runs[result['algorithm']].append((result['algorithm'], result['parameters'],
float(result[x_axis]), float(result[y_axis])))
unique_algorithms = set(runs)
linestyles = create_linestyles(sorted(unique_algorithms))
if not runs:
raise Exception('Nothing to plot')
create_plot(runs, args.raw, args.x_scale,
args.y_scale, args.x_axis, args.y_axis, args.output,
linestyles)