-
Notifications
You must be signed in to change notification settings - Fork 44
/
analyze_cli.py
50 lines (48 loc) · 1.57 KB
/
analyze_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from model_analyzer import ModelAnalyzer
import torch.nn as nn
import numpy as np
import os
import importlib
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("model_id", type=str, help="model id")
parser.add_argument(
"hardware",
type=str,
help="name of hardware, for example nvidia_V100 or nvidia_A6000",
)
parser.add_argument(
"--source",
type=str,
default="huggingface",
help="source of model, if not huggingface, will use local model in model_params.<source>",
)
parser.add_argument("--config_file", type=str, default=None, help="config file")
parser.add_argument("--batchsize", type=int, default=1, help="batch size")
parser.add_argument("--seqlen", type=int, default=1024, help="sequence length")
parser.add_argument("--w_bit", type=int, default=16, help="weight bitwidth")
parser.add_argument(
"--a_bit", type=int, default=16, help="temporary activation bitwidth"
)
parser.add_argument("--kv_bit", type=int, default=16, help="kv cache bitwidth")
parser.add_argument(
"--use_flashattention", action="store_true", help="use flash attention"
)
parser.add_argument(
"--tp-size",
type=int,
default=1,
help="the number of devices for tensor parallelism to use"
)
args = parser.parse_args()
analyzer = ModelAnalyzer(args.model_id, args.hardware, args.config_file,source=args.source)
results = analyzer.analyze(
batchsize=args.batchsize,
seqlen=args.seqlen,
w_bit=args.w_bit,
a_bit=args.a_bit,
kv_bit=args.kv_bit,
use_flashattention=args.use_flashattention,
tp_size=args.tp_size
)
analyzer.save_csv()