-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathchatgpt_core.py
111 lines (95 loc) · 4.89 KB
/
chatgpt_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Note that this file was not purpose-made for the reddit history thing, I use it for other conversation scripts I've made and have removed a bunch of functions that aren't relevant.
import os
import json
import openai
import pandas as pd
# Load API key from the text file
try:
with open('chatgpt_api_key.txt', 'r') as file:
openai.api_key = file.read().strip()
except FileNotFoundError:
raise FileNotFoundError("API key file 'chatgpt_api_key.txt' not found in the directory where chat_gpt_core.py is stored. Please create this file, the contents of which should be your api key (and nothing else).")
class ChatGptCore:
def __init__(self, instructions="You are a helpful assistant.", model="gpt-3.5-turbo", filename=None, inserts=None):
self.model = model
self.instructions = instructions
self.filename = filename
self.inserts = inserts if inserts else {}
self.messages = pd.DataFrame(columns=["actor", "message", "sendable"])
if filename:
try:
with open(filename, 'r') as f:
data = json.load(f)
self.messages = pd.DataFrame(data.get('messages', []))
self.model = data.get('model', model)
self.instructions = data.get('instructions', instructions)
except (FileNotFoundError, json.JSONDecodeError) as e:
print(f"File {filename} was not found. This file will be generated to store conversation data.")
def add_message(self, message, actor="user"):
"""
Adds a message to the conversation history.
"""
# Modify the user's message if it contains a keyword from the inserts
if message:
for keyword, insert_text in self.inserts.items():
if keyword in message:
message = f"{message}\n\n{insert_text}"
# For non-background messages, use concat to add to the dataframe
new_entry = pd.DataFrame([{"actor": actor, "message": message, "sendable": True}])
self.messages = pd.concat([self.messages, new_entry], ignore_index=True)
#print(self.messages)
def generate_response(self, message=None, store_message=True, retries=5):
# Compile the messages for GPT
outbound_messages = [{"role": "system", "content": self.instructions}]
for index, row in self.messages.iterrows():
if row['sendable']:
actor_role = "user" if row['actor'] != "assistant" else "assistant"
outbound_messages.append({
"role": actor_role,
"content": row['message']
})
# Only append the user message if it's not None
if message is not None:
outbound_messages.append({"role": "user", "content": message})
try:
response = openai.ChatCompletion.create(
model=self.model,
messages=outbound_messages
)
except openai.error.RateLimitError:
if retries > 0:
time.sleep(20) # Wait for 20 seconds before retrying
return self.generate_response(message, store_message, retries-1)
else:
raise # Re-raise the exception if no retries left
except openai.error.InvalidRequestError as e: # Adjust this to the specific error class you expect
# Check if the error is due to too many tokens and if we have retries left
if "Please reduce the length of the messages" in str(e) and retries > 0:
# Mark the oldest non-background sendable message as unsendable
for index, row in self.messages.iterrows():
if row['sendable'] and row['actor'] != "background":
self.messages.at[index, 'sendable'] = False
break
# Recursive call with decremented retries
return self.generate_response(message, store_message, retries-1)
else:
raise e
# If store_message is True, store the user and AI's messages to the history
if store_message and message is not None:
self.add_message(message)
assistant_message = response.choices[0].message['content']
if store_message:
self.add_message(assistant_message, actor="assistant")
if self.filename:
self.save_chat()
return assistant_message
def save_chat(self):
# Convert the DataFrame to a list of dictionaries
messages = self.messages.to_dict('records')
chat_data = {
"instructions": self.instructions,
"messages": messages,
"model": self.model
}
with open(self.filename, 'w') as f:
json.dump(chat_data, f, indent=4)