forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtridentnet_r50_caffe_1x_coco.py
55 lines (53 loc) · 1.82 KB
/
tridentnet_r50_caffe_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
_base_ = [
'../_base_/models/faster_rcnn_r50_caffe_c4.py',
'../_base_/datasets/coco_detection.py',
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
type='TridentFasterRCNN',
backbone=dict(
type='TridentResNet',
trident_dilations=(1, 2, 3),
num_branch=3,
test_branch_idx=1,
init_cfg=dict(
type='Pretrained',
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
roi_head=dict(type='TridentRoIHead', num_branch=3, test_branch_idx=1),
train_cfg=dict(
rpn_proposal=dict(max_per_img=500),
rcnn=dict(
sampler=dict(num=128, pos_fraction=0.5,
add_gt_as_proposals=False))))
# use caffe img_norm
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))