forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretinanet_r50_fpg_crop640_50e_coco.py
53 lines (51 loc) · 1.53 KB
/
retinanet_r50_fpg_crop640_50e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
_base_ = '../nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py'
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
neck=dict(
_delete_=True,
type='FPG',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
inter_channels=256,
num_outs=5,
add_extra_convs=True,
start_level=1,
stack_times=9,
paths=['bu'] * 9,
same_down_trans=None,
same_up_trans=dict(
type='conv',
kernel_size=3,
stride=2,
padding=1,
norm_cfg=norm_cfg,
inplace=False,
order=('act', 'conv', 'norm')),
across_lateral_trans=dict(
type='conv',
kernel_size=1,
norm_cfg=norm_cfg,
inplace=False,
order=('act', 'conv', 'norm')),
across_down_trans=dict(
type='interpolation_conv',
mode='nearest',
kernel_size=3,
norm_cfg=norm_cfg,
order=('act', 'conv', 'norm'),
inplace=False),
across_up_trans=None,
across_skip_trans=dict(
type='conv',
kernel_size=1,
norm_cfg=norm_cfg,
inplace=False,
order=('act', 'conv', 'norm')),
output_trans=dict(
type='last_conv',
kernel_size=3,
order=('act', 'conv', 'norm'),
inplace=False),
norm_cfg=norm_cfg,
skip_inds=[(0, 1, 2, 3), (0, 1, 2), (0, 1), (0, ), ()]))
evaluation = dict(interval=2)