-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathImage_classification_on_CIFAR_10.py
119 lines (99 loc) · 4.22 KB
/
Image_classification_on_CIFAR_10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# Image classification on CIFAR 10
import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator
from keras.layers import Dense, Flatten, Dropout, MaxPooling2D, Conv2D, Convolution2D, BatchNormalization, Activation
import matplotlib.pyplot as plt
from keras.utils import to_categorical
import warnings
warnings.filterwarnings('ignore')
#loading data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
#priting features shape
print('x_train shape:', len(x_train))
print('x_test shape:', x_test.shape)
print('x_test shape:', len(x_test))
#priting labels shape
print('y_train shape:', y_train.shape)
print('y_train shape:', len(y_train))
print('y_test shape:', y_test.shape)
print('y_test shape:', len(y_test))
#all classes images
for i in range(10):
plt.imshow(x_train[i])
plt.show()
#one hot encoding on y column
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
y_train = y_train/255
y_test = y_test/255
#changing datatype fo columns
y_train = y_train.astype('float32')
y_test = y_test.astype('float32')
#building a model
classifier = Sequential()
#Convolution Layers with regularization
classifier.add(Convolution2D(32, (3,3), input_shape=(32, 32, 3)))
classifier.add(Activation('relu'))
classifier.add(BatchNormalization())
classifier.add(Convolution2D(32, (3,3), input_shape=(32, 32, 3)))
classifier.add(Activation('relu'))
classifier.add(BatchNormalization())
classifier.add(MaxPooling2D(pool_size=(3,3)))
classifier.add(Dropout(0.4))
classifier.add(Convolution2D(64, (3,3)))
classifier.add(Activation('relu'))
classifier.add(BatchNormalization())
classifier.add(Convolution2D(64, (3,3)))
classifier.add(Activation('relu'))
classifier.add(BatchNormalization())
classifier.add(MaxPooling2D(pool_size=(3,3)))
classifier.add(Dropout(0.5))
#Adding Dense Layers
classifier.add(Flatten())
classifier.add(Dense(units=1024))
classifier.add(BatchNormalization())
classifier.add(Activation('relu'))
classifier.add(Dropout(0.5))
classifier.add(Dense(units=10))
classifier.add(Activation('softmax'))
#Compiling model
classifier.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
zca_epsilon=1e-06, # epsilon for ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
# randomly shift images horizontally (fraction of total width)
width_shift_range=0.1,
# randomly shift images vertically (fraction of total height)
height_shift_range=0.1,
shear_range=0., # set range for random shear
zoom_range=0., # set range for random zoom
channel_shift_range=0., # set range for random channel shifts
# set mode for filling points outside the input boundaries
fill_mode='nearest',
cval=0., # value used for fill_mode = "constant"
horizontal_flip=True, # randomly flip images
vertical_flip=True, # randomly flip images
# set rescaling factor (applied before any other transformation)
rescale=None,
# set function that will be applied on each input
preprocessing_function=None,
# image data format, either "channels_first" or "channels_last"
data_format=None,
# fraction of images reserved for validation (strictly between 0 and 1)
validation_split=0.0)
datagen.fit(x_train)
classifier.fit_generator(datagen.flow(x_train, y_train, batch_size=64),
epochs=128, validation_data=(x_test, y_test), steps_per_epoch=len(x_train) / 32)
#saving sn object
classifier.save('Object_classification_model.h5')
# Score trained model.
scores = classifier.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])