We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi.
I am playing with ml ensemble in Kaggle but I keep getting 0 score accuracy on submission. I can't figure out what is wrong!
from mlens.ensemble import BlendEnsemble from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC seed=3 def build_ensemble(proba, **kwargs): """Return an ensemble.""" estimators = [ SVC(probability=proba), CatBoostClassifier(iterations=300, logging_level='Silent', learning_rate= 0.03, depth=5)]
ensemble = BlendEnsemble(**kwargs) ensemble.add(estimators, proba=proba) # Specify 'proba' here ensemble.add_meta(LogisticRegression()) return ensemble
ensemble_false = build_ensemble(proba=False) ensemble_false.fit(X_, Y) #preds_false = ensemble_false.predict(X_) #print("Accuracy:\n%r" % accuracy_score(preds_false, Y))
ensemble = build_ensemble(proba=True) ensemble.fit(X_, Y) #preds = ensemble.predict(X_) #print("\nAccuracy:\n%r" % accuracy_score(preds, Y))
Xtest = pd.read_csv('../input/labdata-churn-challenge-2020/test.csv')
X_test_ = feat_engineering_types(Xtest) X_test_2 = trata_na(X_test_) X_test_3 = coloca_dummy(X_test_2) predicted_prices_false = ensemble_false.predict(X_test_3)
my_submission_false = pd.DataFrame({'id': Xtest.id, 'Churn': predicted_prices_false})
my_submission_false.to_csv('submission.csv', index=False) predicted_prices = ensemble.predict(X_test_3)
my_submission2 = pd.DataFrame({'id': Xtest.id, 'Churn': predicted_prices})
my_submission2.to_csv('submission2.csv', index=False)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Hi.
I am playing with ml ensemble in Kaggle but I keep getting 0 score accuracy on submission. I can't figure out what is wrong!
from mlens.ensemble import BlendEnsemble
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
seed=3
def build_ensemble(proba, **kwargs):
"""Return an ensemble."""
estimators = [
SVC(probability=proba),
CatBoostClassifier(iterations=300,
logging_level='Silent', learning_rate= 0.03, depth=5)]
ensemble_false = build_ensemble(proba=False)
ensemble_false.fit(X_, Y)
#preds_false = ensemble_false.predict(X_)
#print("Accuracy:\n%r" % accuracy_score(preds_false, Y))
ensemble = build_ensemble(proba=True)
ensemble.fit(X_, Y)
#preds = ensemble.predict(X_)
#print("\nAccuracy:\n%r" % accuracy_score(preds, Y))
Xtest = pd.read_csv('../input/labdata-churn-challenge-2020/test.csv')
X_test_ = feat_engineering_types(Xtest)
X_test_2 = trata_na(X_test_)
X_test_3 = coloca_dummy(X_test_2)
predicted_prices_false = ensemble_false.predict(X_test_3)
my_submission_false = pd.DataFrame({'id': Xtest.id, 'Churn': predicted_prices_false})
my_submission_false.to_csv('submission.csv', index=False)
predicted_prices = ensemble.predict(X_test_3)
my_submission2 = pd.DataFrame({'id': Xtest.id, 'Churn': predicted_prices})
my_submission2.to_csv('submission2.csv', index=False)
The text was updated successfully, but these errors were encountered: