-
Notifications
You must be signed in to change notification settings - Fork 0
/
4) ProPerMSA_analyses.Rmd
executable file
·567 lines (531 loc) · 25.1 KB
/
4) ProPerMSA_analyses.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# ProPer analyses (IV): *Synchrony*, *∆F0*/*DeltaF0*, *Mass* and *Speech-rate*
Quantifying continuous prosody with periodic energy and F0 data to quantify prosodic strength (*Mass*), to describe pitch contours (using *Synchrony* within intervals and *∆F0*/*DeltaF0* between intervals) and to calculate local *Speech-rate*.
```{r clean_start}
rm(list = ls())
## Load required libraries
require(ggplot2)
require(dplyr)
require(seewave)
require(purrr)
require(Cairo)
require(zoo)
main_df <- read.csv("data_tables/main_df.csv") %>% distinct(file, t, .keep_all = TRUE)
manual <- length(main_df$syll_bounds) > 0
```
# Detect boundaries
```{r boundary_detection, warning=FALSE, include=FALSE}
comp_df <- droplevels(main_df)
#
#####################################
############## Presets ##############
#####################################
#### using manual segmentation data:
# choose [1] to consider manual segmentations (provided they exist)
# choose [2] to use only the automatic detection algorithm
useManual <- c(manual, FALSE)[1] # {[1] -- [2]}
#
#### automatic and manual boundary cross-feed:
# adjust the maximum allowed distance (in ms) between automatic and manual boundaries (based on periodic energy curve and TextGrid annotation, respectively)
# lower values are more restrictive: at '0' boundaries are forced on the manual segmentations
autoMan <- 40 # {0 -- 100}
#
#### determine expected syllable number by average (when 'useManual' = FALSE)
# choose an average syllable size (in ms)
averageSyll <- 175 # {75 -- 250}
#
#####################################
########## find boundaries ##########
#####################################
## pre-loop
if(useManual==TRUE) comp_df <- mutate(
group_by(comp_df, file),
syll_boundsSeq = na.locf(syll_bounds, na.rm=F),
syll_boundsSeq = ifelse(is.na(syll_boundsSeq), 0, syll_boundsSeq)
)
#
comp_df <- mutate(
group_by(comp_df),
# keep records of adjustable variables
useManualStatus = useManual,
autoManStatus = autoMan,
averageSyllStatus = averageSyll,
# prepare empty columns
auto_bounds = NA,
DeltaF0 = NA)
comp_df <- mutate(
group_by(comp_df, file),
## compute and smooth 1st and 2nd derivatives of the periodic energy curve
smogPP_1stDer = ifelse(t==0, 0, (smogPP_12Hz - lag(smogPP_12Hz,1))*1000),
smogPP_1stDer = bwfilter(wave = smogPP_1stDer, f = 1000, to = 40, n = 2),
smogPP_2ndDer = ifelse(t==0, 0, (smogPP_1stDer - lag(smogPP_1stDer,1))*20)
)
#
## loop
nop <- function(x) x
files <- comp_df$file
files <- files[!duplicated(files)==TRUE]
plyr::ldply(files, function(f) {
sel_file <- f
single_token <- dplyr::filter(comp_df, file==sel_file)
single_token$boundetect <- c()
#
expSyllNum <- ifelse(useManual==TRUE,
length(which(!is.na(single_token$syll_bounds))),
(length(which(single_token$smogPP_20Hz > 0)) / averageSyll) + 1)
#
## == ## == ## == ## == ## == ## == ## == ## == ## == ## == ##
## == ## == ## == ## == ## == ## == ## == ## == ## == ## == ##
#
andCond <- function(cond,bVector) (cond & bVector)
condMap <- function(cond,f,arguments,combf) {
for (argument in arguments)
cond %>% combf(f(argument)) -> cond
cond
}
## determine the distance in ms (both sides) for valid local peaks
Lags <- c(1,10,20,25,30,40,50)
##
if(useManual==TRUE) mkBoundetect <- function(single_token) {
sss <- single_token$smogPP_2ndDerDyn
ssscmp <- function(x) ( sss > x )
ssscmpf <- function(f) function(x) ( sss > f(sss,x) )
TRUE %>%
andCond( ssscmp(0.05) ) %>%
condMap( ssscmpf(lag), Lags, andCond ) %>%
condMap( ssscmpf(lead), Lags, andCond ) %>%
andCond(
## determine left distance (in ms) from manual boundaries
single_token$t < single_token$syll_boundsSeq +autoMan |
## determine right distance (in ms) from manual boundaries
single_token$t < lead(single_token$syll_boundsSeq, autoMan)
) %>%
which()
}
#
if(useManual==FALSE) mkBoundetect <- function(single_token) {
sss <- single_token$smogPP_2ndDerDyn
ssscmp <- function(x) ( sss > x )
ssscmpf <- function(f) function(x) ( sss > f(sss,x) )
TRUE %>%
andCond( ssscmp(0.05) ) %>%
condMap( ssscmpf(lag), Lags, andCond ) %>%
condMap( ssscmpf(lead), Lags, andCond ) %>%
which()
}
#
trySensitivity <- function(ee, detection_sensitivity) {
colnames(ee$single_token)
if (length(ee$boundetect) >= expSyllNum)
return( ee )
mutate(group_by(ee$single_token),
smogPP_2ndDerDyn = bwfilter(
wave = smogPP_2ndDer,
f = 1000,
to = detection_sensitivity,
n = 2)) -> ee$single_token
ee$boundetect <- mkBoundetect( ee$single_token )
ee
}
#
## == ## == ## == ## == ## == ## == ## == ## == ## == ## == ##
## == ## == ## == ## == ## == ## == ## == ## == ## == ## == ##
#
e <- new.env()
e$single_token <- single_token
e$boundetect <- c()
sensitivityStepSize <- 0.5
sensitivities <- (1:40) * sensitivityStepSize
e -> ee
for (sensitivity in sensitivities) {
ee %>% trySensitivity(sensitivity) -> ee
if (length(ee$boundetect) >= expSyllNum) break
}
#
single_token <- ee$single_token
boundetect <- ee$boundetect
#
## add to dataframe
single_token$auto_bounds[boundetect] <- single_token$t[boundetect]
#
## write single df
write.csv(single_token,file=paste0("data_tables/single_tokens/",sel_file,"_analysis.csv"), row.names=FALSE)
rm(single_token,sel_file)
})
#
## Read the single df files
dir_singles <- "data_tables/single_tokens/"
files <- list.files(path=dir_singles, pattern="*.csv",full.names=T)
comp_df_comb <- plyr::ldply(files, function(f){
singles <- read.csv(f,header=T, sep=",")
})
comp_df <- comp_df_comb
#
# delete temporary single_token files
# unlink("data_tables/single_tokens/*.csv")
#
## add boundaries at manual 'syll_bounds' if there are no close automatic 'auto_bounds'
if(useManual==TRUE) comp_df <- mutate(
group_by(comp_df, file),
# stretch auto_bounds observtions to locate missing auto_bounds
auto_boundsSeq = na.locf(auto_bounds, na.rm=F),
auto_boundsSeq = ifelse(is.na(auto_boundsSeq), 0, auto_boundsSeq),
# locate missing auto_bounds (where a syll_bound exists)
auto_bounds = ifelse(
(!is.na(syll_bounds) &
(syll_bounds > auto_boundsSeq +autoMan | syll_bounds -autoMan < 0) &
(syll_bounds > lead(auto_boundsSeq, autoMan) | syll_bounds +autoMan > max(t))),
syll_bounds, auto_bounds),
# re-stretch the auto_bounds observtions after change
auto_boundsSeq = na.locf(auto_bounds, na.rm=F),
auto_boundsSeq = ifelse(is.na(auto_boundsSeq), 0, auto_boundsSeq)
)
#
## re-create the boundaries list
boundetected <- which(!is.na(comp_df$auto_bounds))
## get the filemames list
files <- comp_df$file
files <- files[!duplicated(files)==TRUE]
```
## Plot boundaries
```{r plotDetecTest, warning=FALSE}
##################################
########### loop start ###########
plyr::ldply(files, function(f){
detect_sel_file <- f
##################################
#####################################
###### manual singles, no-loop ######
# detect_sel_file <- files[4] # or: "filename"
#####################################
auto_boundsPlot <- dplyr::filter(droplevels(comp_df), file==detect_sel_file)
#
# plot derivatives to adjust automatic detector
singleBounds <- ggplot(auto_boundsPlot, aes(x=t)) +
##### Periodic energy (smogPP_XXHz)
geom_line(aes(y=smogPP_12Hz*100), color="red", alpha=.4, size=1.5) +
#### boundaries
geom_hline(yintercept = 0, size=.2, alpha=.5) +
{if(manual==TRUE) geom_vline(aes(xintercept=syll_bounds), linetype="dotted", color="gray", size=.5, alpha=.5)} +
geom_segment(aes(x=auto_bounds, xend=auto_bounds, y=0, yend=100), position = "dodge", color="red", size=1, alpha=.5, linetype = "solid", lineend = "round") +
##### Derivatives
geom_line(aes(y=smogPP_1stDer),color="black", alpha=.4, size=1) +
geom_line(aes(y=smogPP_2ndDer),color="gold", alpha=.8, size=1) +
geom_line(aes(y=smogPP_2ndDerDyn*10),color="green", alpha=.6, size=1) +
##### annotations
{if(manual==TRUE) geom_text(aes(x=syll_mid, y=110, label=as.character(syll_label), check_overlap=T), size=3, color="black", family= "Helvetica")} +
theme(plot.title = element_text(size = 8), panel.background = element_blank(), plot.background = element_rect(fill = "white"), panel.grid = element_blank(), axis.title = element_blank(), axis.text.x = element_text(size = 8), axis.text.y = element_text(size = 8), axis.ticks = element_blank(), strip.text = element_text(size = 8))
print(singleBounds)
##--save?
ggsave(singleBounds, file=paste0("plots/",detect_sel_file,"_autoBoundsPlot.pdf"),device=cairo_pdf)
##################################
############ loop end ############
})
##################################
```
# Calculate
The following are a set of functions that are based on the boundary detection above (*boundary_detection* chunk) and computations within and across resulting intervals (in the following *run_fun* chunk). We measure the area under the periodic energy curve (*mass*), and the center of mass of the periodic energy curve (*CoM*). We calculate local *speech-rate* in terms of the temporal distance between consecutive CoMs, and we calcualte *∆F0*/*DeltaF0* as the F0 distance between consecutive CoMs. We also locate the center of gravity of F0 (*CoG*), and we calcualte *synchrony* as the distance between centers (CoG - CoM).
```{r run_fun, warning=FALSE, echo=FALSE}
### Define intervals from detected boundaries
boundaries <- c(comp_df$t[boundetected],0)
l <- length(boundaries)
filenames <- c(as.character(comp_df$file[boundetected]),"")
intervals <- data.frame(
file = filenames[1:(l-1)],
fileEnd = filenames[2:l],
start = boundaries[1:(l-1)],
end = boundaries[2:l],
stringsAsFactors = FALSE
)
intervals <- intervals[(intervals$file == intervals$fileEnd),]
intervals$fileEnd <- NULL
#
### Interval calculation function
intervalKalk <- function(fn,fieldName) function(interval) {
selection <- ((comp_df$t>=interval$start) &
(comp_df$t<interval$end) &
(comp_df$file == interval$file))
comp_df[selection,] %>% fn() %>%
(function(x) {
# print(fieldName)
# print(selection)
# print(x)
comp_df[selection, fieldName] <<- x
x
})
}
#
### Mapping function (general)
markMap <- function(.x,.f,...) {
# print(dim (.x))
# print(colnames (.x))
indices <- (1:(dim(.x)[1]))
indices %>%
purrr::map(function(w) {.f(.x[w,]) }) %>%
# purrr::map(function(w) {print(w); .f(.x[w,]) }) %>%
unlist()
.x
}
#
### Caculation functions (specific)
# Area Under the Curve ('mass' relating to prosodic strength)
mass <- function(df) {
x <- round(sum(df$smogPP_12Hz, na.rm=T),3)
x
}
#
# length of interval with periodic energy
intervalDuration <- function(df) {
x <- length(which(df$smogPP_12Hz > 0.01))
x
}
#
# Center of Mass (center of syllabic masses)
CoM <- function(df) {
# print(df)
ifelse(
sum(df$smogPP_12Hz, na.rm=T) < 5, 0, # minimum = 50 (ms) * 0.1 (smogPP) = 5
round(sum(df$smogPP_12Hz * df$t, na.rm=T) / sum(df$smogPP_12Hz, na.rm=T)))
}
#
# Center of Gravity (center of F0 slope)
# CoG uses the interpolated F0 multiplied by the corresponding periodic energy fraction (0--1)
CoG <- function(df) {
# set the floor of the F0 curve: the interval's minimum minus a fixed percentage of the overall range (.1--.25)
f0Floor <- ifelse(df$f0_speaker_range > 99,
min(df$f0_realFloorStretch, na.rm=T) - .1 * df$f0_speaker_range,
min(df$f0_realFloorStretch, na.rm=T) - .1 * 100)
ifelse(
sum(df$smogPP_12Hz, na.rm=T) < 5, 0, # minimum = 50 (ms) * 0.1 (smogPP) = 5
round(sum((df$f0_interp_stretch_smooth - f0Floor) * df$t * df$smogPP_12Hz, na.rm=T) / sum((df$f0_interp_stretch_smooth - f0Floor) * df$smogPP_12Hz, na.rm=T),3))
}
#
# F0 and periodic energy values at centers
f0atCoM <- function(df) ifelse(df$CoM==0, 0, df$f0_interp_stretch_smooth[df$t == round(df$CoM)])
f0atCoG <- function(df) ifelse(df$CoG==0, 0, df$f0_interp_stretch_smooth[df$t == round(df$CoG)])
# f0atCoM <- function(df) ifelse(df$CoM==0, 0, round(df$f0_interp_stretch_smooth[df$t == round(df$CoM)]))
# f0atCoG <- function(df) ifelse(df$CoG==0, 0, round(df$f0_interp_stretch_smooth[df$t == round(df$CoG)]))
PERatCoM <- function(df) ifelse(df$CoM==0, 0, df$smogPP_12Hz[df$t == round(df$CoM)])
PERatCoG <- function(df) ifelse(df$CoG==0, 0, df$smogPP_12Hz[df$t == round(df$CoG)])
# PERatCoM <- function(df) ifelse(df$CoM==0, 0, round(df$smogPP_20Hz[df$t == round(df$CoM)],4))
# PERatCoG <- function(df) ifelse(df$CoG==0, 0, round(df$smogPP_20Hz[df$t == round(df$CoG)],4))
#
# Synchrony between CoG and CoM:
synchrony <- function(df) {
round(df$CoG - df$CoM, 3)
}
#
# delete in case of re-runs
comp_df$mass <- NULL
comp_df$intervalDuration <- NULL
comp_df$CoM <- NULL
comp_df$CoG <- NULL
comp_df$f0atCoM <- NULL
comp_df$f0atCoG <- NULL
comp_df$PERatCoM <- NULL
comp_df$PERatCoG <- NULL
comp_df$synchrony <- NULL
#
### Map specific functions to dataframe
intervals %>%
markMap(intervalKalk(mass,"mass")) %>%
markMap(intervalKalk(intervalDuration,"intervalDuration")) %>%
markMap(intervalKalk(CoM,"CoM")) %>%
markMap(intervalKalk(CoG,"CoG")) %>%
markMap(intervalKalk(f0atCoM,"f0atCoM")) %>%
markMap(intervalKalk(f0atCoG,"f0atCoG")) %>%
markMap(intervalKalk(PERatCoM,"PERatCoM")) %>%
markMap(intervalKalk(PERatCoG,"PERatCoG")) %>%
markMap(intervalKalk(synchrony,"synchrony"))
#
# change '0's to 'NA's
comp_df <- mutate(
group_by(comp_df,file),
CoM = ifelse(CoM==0, NA, CoM),
CoG = ifelse(CoG==0, NA, CoG),
f0atCoM = ifelse(f0atCoM==0, NA, f0atCoM),
f0atCoG = ifelse(f0atCoG==0, NA, f0atCoG),
PERatCoM = ifelse(PERatCoM==0, NA, PERatCoM),
PERatCoG = ifelse(PERatCoG==0, NA, PERatCoG))
#
# compute ∆F0
f0atCoM_list <- comp_df$f0atCoM[boundetected]
realFluct_i <- which(!is.na(f0atCoM_list))
relevantFluct_i <- realFluct_i[-1]
DeltaListF0 <- diff(f0atCoM_list[realFluct_i])
DeltaF0List <- f0atCoM_list
DeltaF0List[relevantFluct_i] <- DeltaListF0
comp_df$DeltaF0[boundetected] <- DeltaF0List
#
##### add, clean and scale parameters
comp_df <- mutate(
group_by(comp_df, file),
## ignore weak intervals
CoM_corr = ifelse(CoM!=lag(CoM) | (!is.na(CoM) & is.na(lag(CoM))), CoM, NA),
CoG_corr = ifelse(CoG!=lag(CoG) | (!is.na(CoG) & is.na(lag(CoG))), CoG, NA),
## '∆F0': add token-initial values (realtive to speaker's median F0)
DeltaF0 = ifelse(
min(which(!is.na(CoM)), na.rm = T) == t+1, f0atCoM - f0_speaker_median,
ifelse(
(!is.na(auto_bounds) & !is.na(f0atCoM)), DeltaF0, NA)),
# DeltaF0 = ifelse(
# auto_bounds==min(auto_bounds, na.rm=T), f0atCoM - f0_speaker_median,
# ifelse(
# (!is.na(auto_bounds) & !is.na(f0atCoM)), DeltaF0, NA)),
## '∆F0': stretch observations
DeltaF0 = ifelse(
!is.na(mass), na.locf(DeltaF0, na.rm=F), NA),
## normalize parameters
DeltaF0_rel = round((DeltaF0 / f0_speaker_range) * 100, 3),
sync_rel = round((synchrony / intervalDuration) * 100, 3),
mass_rel = round(mass / (sum(smogPP_12Hz, na.rm=T) / length(levels(as.factor(CoM_corr)))), 3),
intervalDuration_rel = ifelse(
!is.na(intervalDuration),
round(intervalDuration / max(intervalDuration, na.rm=T), 3), NA),
## create plot-friendly data
DeltaF0Label = ifelse(
round(DeltaF0)>0, paste0('+',round(DeltaF0),'Hz (',round(abs(DeltaF0_rel)),'%)'),
paste0(round(DeltaF0),'Hz (',round(abs(DeltaF0_rel)),'%)')),
syncLabel = ifelse(
round(synchrony)>0, paste0('+',round(synchrony),' ms (',round(abs(sync_rel)),'%)'),
paste0(round(synchrony),' ms (',round(abs(sync_rel)),'%)')),
#####################################
############ speech-rate ############
#####################################
## 'CoM': stretch observations
CoM_seq = na.locf(CoM_corr, na.rm=F),
## 'CoM: calculate consecutive CoM diffs
CoM_diff = ifelse(
!is.na(CoM_corr), CoM_corr - lag(CoM_seq, 2), NA),
## normalize CoM_diff (0--1)
CoM_diff_rel = ifelse(
!is.na(CoM_corr), round(CoM_diff / max(CoM_diff, na.rm=T), 3), NA),
## 'CoM_diff': add token-initial value (realtive to interval durationss in the tokens)
CoM_diff_rel = ifelse(
t == min(CoM_corr, na.rm=T), intervalDuration_rel, CoM_diff_rel),
## CoM_diff_rel': stretch observations to keep values @ CoM
CoM_diff_rel = na.locf(CoM_diff_rel, na.rm=F),
CoM_diff_rel = ifelse(
t==CoM & !is.na(CoM), CoM_diff_rel, NA),
## 'CoM_diff_rel': invert values (1--0)
CoM_diff_relInv = ifelse(!is.na(CoM_diff_rel), (CoM_diff_rel*-1) + 1, NA),
## 'CoM_diff_relInv': interpolate values (1--0)
CoM_diff_relInterp = pracma::interp1(t, CoM_diff_relInv),
## 'CoM_diff_relInterp': stretch observations before smoothing
CoM_diff_relInterpStretch = ifelse(
(is.na(CoM_diff_relInterp) & t<min(which(!is.na(CoM_diff_relInterp)))),
CoM_diff_relInterp[min(which(!is.na(CoM_diff_relInterp)))],
ifelse(
(is.na(CoM_diff_relInterp) & t>=max(which(!is.na(CoM_diff_relInterp)))),
CoM_diff_relInterp[max(which(!is.na(CoM_diff_relInterp)))], CoM_diff_relInterp)),
## 'CoM_diff_relInterpStretch': smooth and unstretch
CoM_diff_relSmoothInterp = bwfilter(wave = CoM_diff_relInterpStretch, f = 1000, to = 2, n = 1),
localSpeechRate = ifelse(
!is.na(CoM_diff_relInterp), round(CoM_diff_relSmoothInterp, 4), NA)
)
```
## Plot periograms with computations overlaid
```{r plot, warning=FALSE}
yScale <- c('tokenScale', 'speakerScale', 'dataScale')[2]
##################################
########### loop start ###########
plyr::ldply(files, function(f){
sel_file <- f
##################################
#####################################
###### manual singles, no-loop ######
# sel_file <- files[3] # or: "filename"
#####################################
single_token <- dplyr::filter(comp_df, file==sel_file)
plotFloor <- ifelse(yScale == 'tokenScale', single_token$plotFloorToken[1],
ifelse(yScale == 'speakerScale', single_token$plotFloorSpeaker[1],
ifelse(yScale == 'dataScale', single_token$plotFloorData[1], -275)))
plotUnits <- ifelse(yScale == 'tokenScale', round(single_token$f0_token_range[1]/30),
ifelse(yScale == 'speakerScale', round(single_token$f0_speaker_range[1]/30),
ifelse(yScale == 'dataScale', round(single_token$f0_data_range[1]/30), 12)))
f0range <- ifelse(yScale == 'tokenScale', single_token$f0_token_range[1],
ifelse(yScale == 'speakerScale', single_token$f0_speaker_range[1],
ifelse(yScale == 'dataScale', single_token$f0_data_range[1], 350)))
f0max <- ifelse(yScale == 'tokenScale', single_token$f0_token_max[1],
ifelse(yScale == 'speakerScale', single_token$f0_speaker_max[1],
ifelse(yScale == 'dataScale', single_token$f0_data_max[1], 425)))
midLow <- ifelse(yScale == 'tokenScale', round(single_token$f0_token_min[1]-single_token$f0_token_range[1]/2),
ifelse(yScale == 'speakerScale', round(single_token$f0_speaker_min[1]-single_token$f0_speaker_range[1]/2),
ifelse(yScale == 'dataScale', round(single_token$f0_data_min[1]-single_token$f0_data_range[1]/2), -100)))
midHigh <- ifelse(yScale == 'tokenScale', round(single_token$f0_token_max[1]-single_token$f0_token_range[1]/2),
ifelse(yScale == 'speakerScale', round(single_token$f0_speaker_max[1]-single_token$f0_speaker_range[1]/2),
ifelse(yScale == 'dataScale', round(single_token$f0_data_max[1]-single_token$f0_data_range[1]/2), 250)))
maxBounds <- ifelse(manual==TRUE,
max(single_token$auto_bounds,single_token$syll_bounds,na.rm = T),
max(single_token$auto_bounds,na.rm = T))
minBounds <- ifelse(manual==TRUE,
min(single_token$auto_bounds,single_token$syll_bounds,na.rm = T),
min(single_token$auto_bounds,na.rm = T))
plot_comp <-
ggplot(single_token, aes(x=t)) +
####################### F0 curves
##### smooth
# geom_point(aes(y=f0_smooth),color="blue3", alpha=.3, size=.3) +
##### interpolated
# geom_point(aes(y=f0_interp_stretch_smooth),color="red", alpha=.3, size=.3) +
##### periogram (smogPP)
geom_line(aes(y=f0_interp_stretch_smooth),color="blue", alpha=single_token$smogPP_20Hz, size=single_token$smogPP_20Hz*3.5) +
####################### Periodic energy curve
geom_line(aes(y=smogPP_12Hz*f0range+plotFloor),color="red", alpha=.75, size=.5) +
####################### Speech-rate curve
geom_line(aes(y=localSpeechRate*f0range+plotFloor),color="springgreen4", alpha=.75, size=2.5, linetype="solid", linejoin = "round")+#, lineend = "butt", linejoin = "round") +
####################### boundaries
{if(manual==TRUE) geom_segment(aes(x=syll_bounds, xend=syll_bounds, y=plotFloor, yend=f0max+plotUnits*9), linetype="dotted", color="black", size=.5, alpha=.7)} +
geom_segment(aes(x=auto_bounds, xend=auto_bounds, y=plotFloor, yend=f0max+plotUnits*9), position = "dodge", color="red", size=.5, alpha=.5, linetype = "solid", lineend = "round") +
####################### landmarks
##### CoMs
geom_segment(aes(x=CoM_corr, xend=CoM_corr, y=plotFloor, yend=PERatCoM*f0range+plotFloor), position = "dodge", color="red", size=.5, alpha=.5, linetype = "longdash", lineend = "round") +
geom_segment(aes(x=CoM_corr, xend=CoM_corr, y=f0atCoM+plotUnits*3, yend=f0atCoM-plotUnits*3), position = "dodge", color="red", size=.3, alpha=.9, linetype = "longdash", lineend = "round") +
##### CoGs
geom_segment(aes(x=CoG_corr, xend=CoG_corr, y=f0atCoG+plotUnits*3, yend=f0atCoG-plotUnits*3), position = "dodge", color="blue", size=.3, alpha=.9, linetype = "solid", lineend = "round") +
####################### annotations
##### text
{if(manual==TRUE) geom_text(aes(x=single_token$syll_mid, y=f0max+plotUnits*8, label=syll_label, check_overlap=T), color="black", size=3, family= "Helvetica")} +
geom_text(aes(x=single_token$word_mid, y=f0max+plotUnits*13, label=word_label, check_overlap=T), color="grey", size=4, family= "Helvetica") +
##### ∆F0 / F0 @ CoM
geom_text(aes(x=CoM_corr, y=f0atCoM+plotUnits*4, label=DeltaF0Label), check_overlap=T, color="blue", size=2, family= "Helvetica") +
##### Synchrony
geom_text(aes(x=CoM_corr + (round(synchrony)/2), y=f0atCoG-plotUnits*4, label=syncLabel), check_overlap=T, color="purple", size=2, family= "Helvetica") +
##### Mass
geom_text(aes(x=single_token$CoM, y=plotFloor-plotUnits, label=mass_rel), check_overlap=T, color="red", size=2, family= "Helvetica") +
####################### legend
##### CoGs
geom_segment(aes(x=minBounds-20, xend=minBounds-20, y=midHigh-plotUnits*3, yend=midHigh+plotUnits*3), color="blue", size=.3, alpha=.8, linetype = "solid", lineend = "round", position = "dodge") +
geom_text(aes(x=minBounds-30, y=midHigh), label="CoG", color="blue", alpha=1, size=2.5, family = "Helvetica", check_overlap=T, na.rm = T, hjust="right") +
##### CoMs
geom_segment(aes(x=minBounds-20, xend=minBounds-20, y=midLow+plotUnits*3, yend=midLow-plotUnits*3), color="red", size=.3, alpha=.8, linetype = "longdash", lineend = "round", position = "dodge") +
geom_text(aes(x=minBounds-30, y=midLow), label="CoM", color="red", alpha=1, size=2.5, family = "Helvetica", check_overlap=T, na.rm = T, hjust="right") +
##### ∆F0 / F0 @ CoM
geom_text(aes(x=maxBounds+10, y=midHigh+plotUnits*4), label="∆F0", color="blue", alpha=1, size=2.5, family = "Helvetica", check_overlap=T, na.rm = T, hjust="left") +
geom_text(aes(x=maxBounds+10, y=midHigh+plotUnits*2), label="low < 0 < high", color="blue", alpha=1, size=2, family = "Helvetica", check_overlap=T, na.rm = T, hjust="left") +
##### Synchrony
geom_text(aes(x=maxBounds+10, y=midHigh-plotUnits*2), label="Synchrony", check_overlap=T, color="purple", size=2.5, family= "Helvetica", hjust="left") +
geom_text(aes(x=maxBounds+10, y=midHigh-plotUnits*4), label="fall < 0 < rise", check_overlap=T, color="purple", size=2, family= "Helvetica", hjust="left") +
##### MAss
geom_text(aes(x=maxBounds+10, y=midLow+plotUnits), label="Mass", check_overlap=T, color="red", size=2.5, family= "Helvetica", hjust="left") +
geom_text(aes(x=maxBounds+10, y=midLow-plotUnits, label="weak < 1 < strong"), check_overlap=T, color="red", size=2, family= "Helvetica", hjust="left") +
####################### plot stuff
# xlim(minBounds-100, max(single_token$t)) +
ylim(plotFloor-plotUnits, f0max+plotUnits*14) +
theme(plot.title = element_blank(), panel.background = element_blank(), plot.background = element_rect(fill = "white"), panel.grid = element_blank(), axis.title = element_blank(), axis.text.x = element_text(size = 8), axis.text.y = element_text(size = 8), axis.ticks = element_blank(), strip.text = element_text(size = 8))
print(plot_comp)
##--save?
ggsave(plot_comp, file=paste0("plots/",sel_file,"_PERIOGRAM+(",yScale,").pdf"),device=cairo_pdf)
##################################
############ loop end ############
})
##################################
```
# Minimize comp_df table
```{r minimize_comp_df}
mini_comp_df <- droplevels(subset(comp_df, select = -c(plotFloorToken, plotFloorSpeaker, plotFloorData, intensityRel, total_powerRel, postPP_rel, logPP_rel, smogPP_1stDer, smogPP_2ndDer, smogPP_2ndDerDyn, CoM_seq, CoM_diff, CoM_diff_rel, CoM_diff_relInv, CoM_diff_relInterp, CoM_diff_relInterpStretch, CoM_diff_relSmoothInterp)))
```
# Write comp_df table
```{r write_comp_df}
## Write the computation data file
write.csv(mini_comp_df, "data_tables/comp_df.csv", row.names=FALSE)
```