forked from devernay/cminpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqrsolv_.c
273 lines (217 loc) · 7.14 KB
/
qrsolv_.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* qrsolv.f -- translated by f2c (version 20020621).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "minpack.h"
#include <math.h>
#include "minpackP.h"
__minpack_attr__
void __minpack_func__(qrsolv)(const int *n, real *r__, const int *ldr,
const int *ipvt, const real *diag, const real *qtb, real *x,
real *sdiag, real *wa)
{
/* Initialized data */
#define p5 .5
#define p25 .25
/* System generated locals */
int r_dim1, r_offset, i__1, i__2, i__3;
real d__1, d__2;
/* Local variables */
int i__, j, k, l, jp1, kp1;
real tan__, cos__, sin__, sum, temp, cotan;
int nsing;
real qtbpj;
/* ********** */
/* subroutine qrsolv */
/* given an m by n matrix a, an n by n diagonal matrix d, */
/* and an m-vector b, the problem is to determine an x which */
/* solves the system */
/* a*x = b , d*x = 0 , */
/* in the least squares sense. */
/* this subroutine completes the solution of the problem */
/* if it is provided with the necessary information from the */
/* qr factorization, with column pivoting, of a. that is, if */
/* a*p = q*r, where p is a permutation matrix, q has orthogonal */
/* columns, and r is an upper triangular matrix with diagonal */
/* elements of nonincreasing magnitude, then qrsolv expects */
/* the full upper triangle of r, the permutation matrix p, */
/* and the first n components of (q transpose)*b. the system */
/* a*x = b, d*x = 0, is then equivalent to */
/* t t */
/* r*z = q *b , p *d*p*z = 0 , */
/* where x = p*z. if this system does not have full rank, */
/* then a least squares solution is obtained. on output qrsolv */
/* also provides an upper triangular matrix s such that */
/* t t t */
/* p *(a *a + d*d)*p = s *s . */
/* s is computed within qrsolv and may be of separate interest. */
/* the subroutine statement is */
/* subroutine qrsolv(n,r,ldr,ipvt,diag,qtb,x,sdiag,wa) */
/* where */
/* n is a positive integer input variable set to the order of r. */
/* r is an n by n array. on input the full upper triangle */
/* must contain the full upper triangle of the matrix r. */
/* on output the full upper triangle is unaltered, and the */
/* strict lower triangle contains the strict upper triangle */
/* (transposed) of the upper triangular matrix s. */
/* ldr is a positive integer input variable not less than n */
/* which specifies the leading dimension of the array r. */
/* ipvt is an integer input array of length n which defines the */
/* permutation matrix p such that a*p = q*r. column j of p */
/* is column ipvt(j) of the identity matrix. */
/* diag is an input array of length n which must contain the */
/* diagonal elements of the matrix d. */
/* qtb is an input array of length n which must contain the first */
/* n elements of the vector (q transpose)*b. */
/* x is an output array of length n which contains the least */
/* squares solution of the system a*x = b, d*x = 0. */
/* sdiag is an output array of length n which contains the */
/* diagonal elements of the upper triangular matrix s. */
/* wa is a work array of length n. */
/* subprograms called */
/* fortran-supplied ... dabs,dsqrt */
/* argonne national laboratory. minpack project. march 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
/* ********** */
/* Parameter adjustments */
--wa;
--sdiag;
--x;
--qtb;
--diag;
--ipvt;
r_dim1 = *ldr;
r_offset = 1 + r_dim1 * 1;
r__ -= r_offset;
/* Function Body */
/* copy r and (q transpose)*b to preserve input and initialize s. */
/* in particular, save the diagonal elements of r in x. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
r__[i__ + j * r_dim1] = r__[j + i__ * r_dim1];
/* L10: */
}
x[j] = r__[j + j * r_dim1];
wa[j] = qtb[j];
/* L20: */
}
/* eliminate the diagonal matrix d using a givens rotation. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* prepare the row of d to be eliminated, locating the */
/* diagonal element using p from the qr factorization. */
l = ipvt[j];
if (diag[l] == 0.) {
goto L90;
}
i__2 = *n;
for (k = j; k <= i__2; ++k) {
sdiag[k] = 0.;
/* L30: */
}
sdiag[j] = diag[l];
/* the transformations to eliminate the row of d */
/* modify only a single element of (q transpose)*b */
/* beyond the first n, which is initially zero. */
qtbpj = 0.;
i__2 = *n;
for (k = j; k <= i__2; ++k) {
/* determine a givens rotation which eliminates the */
/* appropriate element in the current row of d. */
if (sdiag[k] == 0.) {
goto L70;
}
if ((d__1 = r__[k + k * r_dim1], abs(d__1)) >= (d__2 = sdiag[k],
abs(d__2))) {
goto L40;
}
cotan = r__[k + k * r_dim1] / sdiag[k];
/* Computing 2nd power */
d__1 = cotan;
sin__ = p5 / sqrt(p25 + p25 * (d__1 * d__1));
cos__ = sin__ * cotan;
goto L50;
L40:
tan__ = sdiag[k] / r__[k + k * r_dim1];
/* Computing 2nd power */
d__1 = tan__;
cos__ = p5 / sqrt(p25 + p25 * (d__1 * d__1));
sin__ = cos__ * tan__;
L50:
/* compute the modified diagonal element of r and */
/* the modified element of ((q transpose)*b,0). */
r__[k + k * r_dim1] = cos__ * r__[k + k * r_dim1] + sin__ * sdiag[
k];
temp = cos__ * wa[k] + sin__ * qtbpj;
qtbpj = -sin__ * wa[k] + cos__ * qtbpj;
wa[k] = temp;
/* accumulate the tranformation in the row of s. */
kp1 = k + 1;
if (*n < kp1) {
goto L70;
}
i__3 = *n;
for (i__ = kp1; i__ <= i__3; ++i__) {
temp = cos__ * r__[i__ + k * r_dim1] + sin__ * sdiag[i__];
sdiag[i__] = -sin__ * r__[i__ + k * r_dim1] + cos__ * sdiag[
i__];
r__[i__ + k * r_dim1] = temp;
/* L60: */
}
L70:
/* L80: */
;
}
L90:
/* store the diagonal element of s and restore */
/* the corresponding diagonal element of r. */
sdiag[j] = r__[j + j * r_dim1];
r__[j + j * r_dim1] = x[j];
/* L100: */
}
/* solve the triangular system for z. if the system is */
/* singular, then obtain a least squares solution. */
nsing = *n;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (sdiag[j] == 0. && nsing == *n) {
nsing = j - 1;
}
if (nsing < *n) {
wa[j] = 0.;
}
/* L110: */
}
if (nsing < 1) {
goto L150;
}
i__1 = nsing;
for (k = 1; k <= i__1; ++k) {
j = nsing - k + 1;
sum = 0.;
jp1 = j + 1;
if (nsing < jp1) {
goto L130;
}
i__2 = nsing;
for (i__ = jp1; i__ <= i__2; ++i__) {
sum += r__[i__ + j * r_dim1] * wa[i__];
/* L120: */
}
L130:
wa[j] = (wa[j] - sum) / sdiag[j];
/* L140: */
}
L150:
/* permute the components of z back to components of x. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
l = ipvt[j];
x[l] = wa[j];
/* L160: */
}
return;
/* last card of subroutine qrsolv. */
} /* qrsolv_ */