forked from devernay/cminpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
qrfac.c
285 lines (234 loc) · 8.54 KB
/
qrfac.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#include "cminpack.h"
#include <math.h>
#ifdef USE_LAPACK
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#endif
#include "cminpackP.h"
__cminpack_attr__
void __cminpack_func__(qrfac)(int m, int n, real *a, int
lda, int pivot, int *ipvt, int lipvt, real *rdiag,
real *acnorm, real *wa)
{
#ifdef USE_LAPACK
__CLPK_integer m_ = m;
__CLPK_integer n_ = n;
__CLPK_integer lda_ = lda;
__CLPK_integer *jpvt;
int i, j, k;
double t;
double* tau = wa;
const __CLPK_integer ltau = m > n ? n : m;
__CLPK_integer lwork = -1;
__CLPK_integer info = 0;
double* work;
if (pivot) {
assert( lipvt >= n );
if (sizeof(__CLPK_integer) != sizeof(ipvt[0])) {
jpvt = malloc(n*sizeof(__CLPK_integer));
} else {
/* __CLPK_integer is actually an int, just do a cast */
jpvt = (__CLPK_integer *)ipvt;
}
/* set all columns free */
memset(jpvt, 0, sizeof(int)*n);
}
/* query optimal size of work */
lwork = -1;
if (pivot) {
dgeqp3_(&m_,&n_,a,&lda_,jpvt,tau,tau,&lwork,&info);
lwork = (int)tau[0];
assert( lwork >= 3*n+1 );
} else {
dgeqrf_(&m_,&n_,a,&lda_,tau,tau,&lwork,&info);
lwork = (int)tau[0];
assert( lwork >= 1 && lwork >= n );
}
assert( info == 0 );
/* alloc work area */
work = (double *)malloc(sizeof(double)*lwork);
assert(work != NULL);
/* set acnorm first (from the doc of qrfac, acnorm may point to the same area as rdiag) */
if (acnorm != rdiag) {
for (j = 0; j < n; ++j) {
acnorm[j] = __cminpack_enorm__(m, &a[j * lda]);
}
}
/* QR decomposition */
if (pivot) {
dgeqp3_(&m_,&n_,a,&lda_,jpvt,tau,work,&lwork,&info);
} else {
dgeqrf_(&m_,&n_,a,&lda_,tau,work,&lwork,&info);
}
assert(info == 0);
/* set rdiag, before the diagonal is replaced */
memset(rdiag, 0, sizeof(double)*n);
for(i=0 ; i<n ; ++i) {
rdiag[i] = a[i*lda+i];
}
/* modify lower trinagular part to look like qrfac's output */
for(i=0 ; i<ltau ; ++i) {
k = i*lda+i;
t = tau[i];
a[k] = t;
for(j=i+1 ; j<m ; j++) {
k++;
a[k] *= t;
}
}
free(work);
if (pivot) {
/* convert back jpvt to ipvt */
if (sizeof(__CLPK_integer) != sizeof(ipvt[0])) {
for(i=0; i<n; ++i) {
ipvt[i] = jpvt[i];
}
free(jpvt);
}
}
#else /* !USE_LAPACK */
/* Initialized data */
#define p05 .05
/* System generated locals */
real d1;
/* Local variables */
int i, j, k, jp1;
real sum;
real temp;
int minmn;
real epsmch;
real ajnorm;
/* ********** */
/* subroutine qrfac */
/* this subroutine uses householder transformations with column */
/* pivoting (optional) to compute a qr factorization of the */
/* m by n matrix a. that is, qrfac determines an orthogonal */
/* matrix q, a permutation matrix p, and an upper trapezoidal */
/* matrix r with diagonal elements of nonincreasing magnitude, */
/* such that a*p = q*r. the householder transformation for */
/* column k, k = 1,2,...,min(m,n), is of the form */
/* t */
/* i - (1/u(k))*u*u */
/* where u has zeros in the first k-1 positions. the form of */
/* this transformation and the method of pivoting first */
/* appeared in the corresponding linpack subroutine. */
/* the subroutine statement is */
/* subroutine qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa) */
/* where */
/* m is a positive integer input variable set to the number */
/* of rows of a. */
/* n is a positive integer input variable set to the number */
/* of columns of a. */
/* a is an m by n array. on input a contains the matrix for */
/* which the qr factorization is to be computed. on output */
/* the strict upper trapezoidal part of a contains the strict */
/* upper trapezoidal part of r, and the lower trapezoidal */
/* part of a contains a factored form of q (the non-trivial */
/* elements of the u vectors described above). */
/* lda is a positive integer input variable not less than m */
/* which specifies the leading dimension of the array a. */
/* pivot is a logical input variable. if pivot is set true, */
/* then column pivoting is enforced. if pivot is set false, */
/* then no column pivoting is done. */
/* ipvt is an integer output array of length lipvt. ipvt */
/* defines the permutation matrix p such that a*p = q*r. */
/* column j of p is column ipvt(j) of the identity matrix. */
/* if pivot is false, ipvt is not referenced. */
/* lipvt is a positive integer input variable. if pivot is false, */
/* then lipvt may be as small as 1. if pivot is true, then */
/* lipvt must be at least n. */
/* rdiag is an output array of length n which contains the */
/* diagonal elements of r. */
/* acnorm is an output array of length n which contains the */
/* norms of the corresponding columns of the input matrix a. */
/* if this information is not needed, then acnorm can coincide */
/* with rdiag. */
/* wa is a work array of length n. if pivot is false, then wa */
/* can coincide with rdiag. */
/* subprograms called */
/* minpack-supplied ... dpmpar,enorm */
/* fortran-supplied ... dmax1,dsqrt,min0 */
/* argonne national laboratory. minpack project. march 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
/* ********** */
(void)lipvt;
/* epsmch is the machine precision. */
epsmch = __cminpack_func__(dpmpar)(1);
/* compute the initial column norms and initialize several arrays. */
for (j = 0; j < n; ++j) {
acnorm[j] = __cminpack_enorm__(m, &a[j * lda + 0]);
rdiag[j] = acnorm[j];
wa[j] = rdiag[j];
if (pivot) {
ipvt[j] = j+1;
}
}
/* reduce a to r with householder transformations. */
minmn = min(m,n);
for (j = 0; j < minmn; ++j) {
if (pivot) {
/* bring the column of largest norm into the pivot position. */
int kmax = j;
for (k = j; k < n; ++k) {
if (rdiag[k] > rdiag[kmax]) {
kmax = k;
}
}
if (kmax != j) {
for (i = 0; i < m; ++i) {
temp = a[i + j * lda];
a[i + j * lda] = a[i + kmax * lda];
a[i + kmax * lda] = temp;
}
rdiag[kmax] = rdiag[j];
wa[kmax] = wa[j];
k = ipvt[j];
ipvt[j] = ipvt[kmax];
ipvt[kmax] = k;
}
}
/* compute the householder transformation to reduce the */
/* j-th column of a to a multiple of the j-th unit vector. */
ajnorm = __cminpack_enorm__(m - (j+1) + 1, &a[j + j * lda]);
if (ajnorm != 0.) {
if (a[j + j * lda] < 0.) {
ajnorm = -ajnorm;
}
for (i = j; i < m; ++i) {
a[i + j * lda] /= ajnorm;
}
a[j + j * lda] += 1.;
/* apply the transformation to the remaining columns */
/* and update the norms. */
jp1 = j + 1;
if (n > jp1) {
for (k = jp1; k < n; ++k) {
sum = 0.;
for (i = j; i < m; ++i) {
sum += a[i + j * lda] * a[i + k * lda];
}
temp = sum / a[j + j * lda];
for (i = j; i < m; ++i) {
a[i + k * lda] -= temp * a[i + j * lda];
}
if (pivot && rdiag[k] != 0.) {
temp = a[j + k * lda] / rdiag[k];
/* Computing MAX */
d1 = 1. - temp * temp;
rdiag[k] *= sqrt((max((real)0.,d1)));
/* Computing 2nd power */
d1 = rdiag[k] / wa[k];
if (p05 * (d1 * d1) <= epsmch) {
rdiag[k] = __cminpack_enorm__(m - (j+1), &a[jp1 + k * lda]);
wa[k] = rdiag[k];
}
}
}
}
}
rdiag[j] = -ajnorm;
}
/* last card of subroutine qrfac. */
#endif /* !USE_LAPACK */
} /* qrfac_ */