forked from devernay/cminpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlmpar_.c
372 lines (301 loc) · 9.26 KB
/
lmpar_.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
/* lmpar.f -- translated by f2c (version 20020621).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "minpack.h"
#include <math.h>
#include "minpackP.h"
__minpack_attr__
void __minpack_func__(lmpar)(const int *n, real *r__, const int *ldr,
const int *ipvt, const real *diag, const real *qtb, const real *delta,
real *par, real *x, real *sdiag, real *wa1,
real *wa2)
{
/* Table of constant values */
const int c__2 = 2;
/* Initialized data */
#define p1 .1
#define p001 .001
/* System generated locals */
int r_dim1, r_offset, i__1, i__2;
real d__1, d__2;
/* Local variables */
int i__, j, k, l;
real fp;
int jm1, jp1;
real sum, parc, parl;
int iter;
real temp, paru, dwarf;
int nsing;
real gnorm;
real dxnorm;
/* ********** */
/* subroutine lmpar */
/* given an m by n matrix a, an n by n nonsingular diagonal */
/* matrix d, an m-vector b, and a positive number delta, */
/* the problem is to determine a value for the parameter */
/* par such that if x solves the system */
/* a*x = b , sqrt(par)*d*x = 0 , */
/* in the least squares sense, and dxnorm is the euclidean */
/* norm of d*x, then either par is zero and */
/* (dxnorm-delta) .le. 0.1*delta , */
/* or par is positive and */
/* abs(dxnorm-delta) .le. 0.1*delta . */
/* this subroutine completes the solution of the problem */
/* if it is provided with the necessary information from the */
/* qr factorization, with column pivoting, of a. that is, if */
/* a*p = q*r, where p is a permutation matrix, q has orthogonal */
/* columns, and r is an upper triangular matrix with diagonal */
/* elements of nonincreasing magnitude, then lmpar expects */
/* the full upper triangle of r, the permutation matrix p, */
/* and the first n components of (q transpose)*b. on output */
/* lmpar also provides an upper triangular matrix s such that */
/* t t t */
/* p *(a *a + par*d*d)*p = s *s . */
/* s is employed within lmpar and may be of separate interest. */
/* only a few iterations are generally needed for convergence */
/* of the algorithm. if, however, the limit of 10 iterations */
/* is reached, then the output par will contain the best */
/* value obtained so far. */
/* the subroutine statement is */
/* subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, */
/* wa1,wa2) */
/* where */
/* n is a positive integer input variable set to the order of r. */
/* r is an n by n array. on input the full upper triangle */
/* must contain the full upper triangle of the matrix r. */
/* on output the full upper triangle is unaltered, and the */
/* strict lower triangle contains the strict upper triangle */
/* (transposed) of the upper triangular matrix s. */
/* ldr is a positive integer input variable not less than n */
/* which specifies the leading dimension of the array r. */
/* ipvt is an integer input array of length n which defines the */
/* permutation matrix p such that a*p = q*r. column j of p */
/* is column ipvt(j) of the identity matrix. */
/* diag is an input array of length n which must contain the */
/* diagonal elements of the matrix d. */
/* qtb is an input array of length n which must contain the first */
/* n elements of the vector (q transpose)*b. */
/* delta is a positive input variable which specifies an upper */
/* bound on the euclidean norm of d*x. */
/* par is a nonnegative variable. on input par contains an */
/* initial estimate of the levenberg-marquardt parameter. */
/* on output par contains the final estimate. */
/* x is an output array of length n which contains the least */
/* squares solution of the system a*x = b, sqrt(par)*d*x = 0, */
/* for the output par. */
/* sdiag is an output array of length n which contains the */
/* diagonal elements of the upper triangular matrix s. */
/* wa1 and wa2 are work arrays of length n. */
/* subprograms called */
/* minpack-supplied ... dpmpar,enorm,qrsolv */
/* fortran-supplied ... dabs,dmax1,dmin1,dsqrt */
/* argonne national laboratory. minpack project. march 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
/* ********** */
/* Parameter adjustments */
--wa2;
--wa1;
--sdiag;
--x;
--qtb;
--diag;
--ipvt;
r_dim1 = *ldr;
r_offset = 1 + r_dim1 * 1;
r__ -= r_offset;
/* Function Body */
/* dwarf is the smallest positive magnitude. */
dwarf = __minpack_func__(dpmpar)(&c__2);
/* compute and store in x the gauss-newton direction. if the */
/* jacobian is rank-deficient, obtain a least squares solution. */
nsing = *n;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
wa1[j] = qtb[j];
if (r__[j + j * r_dim1] == 0. && nsing == *n) {
nsing = j - 1;
}
if (nsing < *n) {
wa1[j] = 0.;
}
/* L10: */
}
if (nsing < 1) {
goto L50;
}
i__1 = nsing;
for (k = 1; k <= i__1; ++k) {
j = nsing - k + 1;
wa1[j] /= r__[j + j * r_dim1];
temp = wa1[j];
jm1 = j - 1;
if (jm1 < 1) {
goto L30;
}
i__2 = jm1;
for (i__ = 1; i__ <= i__2; ++i__) {
wa1[i__] -= r__[i__ + j * r_dim1] * temp;
/* L20: */
}
L30:
/* L40: */
;
}
L50:
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
l = ipvt[j];
x[l] = wa1[j];
/* L60: */
}
/* initialize the iteration counter. */
/* evaluate the function at the origin, and test */
/* for acceptance of the gauss-newton direction. */
iter = 0;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
wa2[j] = diag[j] * x[j];
/* L70: */
}
dxnorm = __minpack_func__(enorm)(n, &wa2[1]);
fp = dxnorm - *delta;
if (fp <= p1 * *delta) {
goto L220;
}
/* if the jacobian is not rank deficient, the newton */
/* step provides a lower bound, parl, for the zero of */
/* the function. otherwise set this bound to zero. */
parl = 0.;
if (nsing < *n) {
goto L120;
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
l = ipvt[j];
wa1[j] = diag[l] * (wa2[l] / dxnorm);
/* L80: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sum = 0.;
jm1 = j - 1;
if (jm1 < 1) {
goto L100;
}
i__2 = jm1;
for (i__ = 1; i__ <= i__2; ++i__) {
sum += r__[i__ + j * r_dim1] * wa1[i__];
/* L90: */
}
L100:
wa1[j] = (wa1[j] - sum) / r__[j + j * r_dim1];
/* L110: */
}
temp = __minpack_func__(enorm)(n, &wa1[1]);
parl = fp / *delta / temp / temp;
L120:
/* calculate an upper bound, paru, for the zero of the function. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sum = 0.;
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
sum += r__[i__ + j * r_dim1] * qtb[i__];
/* L130: */
}
l = ipvt[j];
wa1[j] = sum / diag[l];
/* L140: */
}
gnorm = __minpack_func__(enorm)(n, &wa1[1]);
paru = gnorm / *delta;
if (paru == 0.) {
paru = dwarf / min(*delta,(real)p1);
}
/* if the input par lies outside of the interval (parl,paru), */
/* set par to the closer endpoint. */
*par = max(*par,parl);
*par = min(*par,paru);
if (*par == 0.) {
*par = gnorm / dxnorm;
}
/* beginning of an iteration. */
L150:
++iter;
/* evaluate the function at the current value of par. */
if (*par == 0.) {
/* Computing MAX */
d__1 = dwarf, d__2 = p001 * paru;
*par = max(d__1,d__2);
}
temp = sqrt(*par);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
wa1[j] = temp * diag[j];
/* L160: */
}
__minpack_func__(qrsolv)(n, &r__[r_offset], ldr, &ipvt[1], &wa1[1], &qtb[1], &x[1], &sdiag[
1], &wa2[1]);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
wa2[j] = diag[j] * x[j];
/* L170: */
}
dxnorm = __minpack_func__(enorm)(n, &wa2[1]);
temp = fp;
fp = dxnorm - *delta;
/* if the function is small enough, accept the current value */
/* of par. also test for the exceptional cases where parl */
/* is zero or the number of iterations has reached 10. */
if (abs(fp) <= p1 * *delta || (parl == 0. && fp <= temp && temp < 0.) ||
iter == 10) {
goto L220;
}
/* compute the newton correction. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
l = ipvt[j];
wa1[j] = diag[l] * (wa2[l] / dxnorm);
/* L180: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
wa1[j] /= sdiag[j];
temp = wa1[j];
jp1 = j + 1;
if (*n < jp1) {
goto L200;
}
i__2 = *n;
for (i__ = jp1; i__ <= i__2; ++i__) {
wa1[i__] -= r__[i__ + j * r_dim1] * temp;
/* L190: */
}
L200:
/* L210: */
;
}
temp = __minpack_func__(enorm)(n, &wa1[1]);
parc = fp / *delta / temp / temp;
/* depending on the sign of the function, update parl or paru. */
if (fp > 0.) {
parl = max(parl,*par);
}
if (fp < 0.) {
paru = min(paru,*par);
}
/* compute an improved estimate for par. */
/* Computing MAX */
d__1 = parl, d__2 = *par + parc;
*par = max(d__1,d__2);
/* end of an iteration. */
goto L150;
L220:
/* termination. */
if (iter == 0) {
*par = 0.;
}
return;
/* last card of subroutine lmpar. */
} /* lmpar_ */