forked from devernay/cminpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhybrj1_.c
163 lines (121 loc) · 5.07 KB
/
hybrj1_.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/* hybrj1.f -- translated by f2c (version 20020621).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "minpack.h"
#include <math.h>
#include "minpackP.h"
__minpack_attr__
void __minpack_func__(hybrj1)(__minpack_decl_fcnder_nn__ const int *n, real *x, real *
fvec, real *fjac, const int *ldfjac, const real *tol, int *
info, real *wa, const int *lwa)
{
/* Initialized data */
const real factor = 100.;
/* System generated locals */
int fjac_dim1, fjac_offset, i__1;
/* Local variables */
int j, lr, mode, nfev, njev;
real xtol;
int maxfev, nprint;
/* ********** */
/* subroutine hybrj1 */
/* the purpose of hybrj1 is to find a zero of a system of */
/* n nonlinear functions in n variables by a modification */
/* of the powell hybrid method. this is done by using the */
/* more general nonlinear equation solver hybrj. the user */
/* must provide a subroutine which calculates the functions */
/* and the jacobian. */
/* the subroutine statement is */
/* subroutine hybrj1(fcn,n,x,fvec,fjac,ldfjac,tol,info,wa,lwa) */
/* where */
/* fcn is the name of the user-supplied subroutine which */
/* calculates the functions and the jacobian. fcn must */
/* be declared in an external statement in the user */
/* calling program, and should be written as follows. */
/* subroutine fcn(n,x,fvec,fjac,ldfjac,iflag) */
/* integer n,ldfjac,iflag */
/* double precision x(n),fvec(n),fjac(ldfjac,n) */
/* ---------- */
/* if iflag = 1 calculate the functions at x and */
/* return this vector in fvec. do not alter fjac. */
/* if iflag = 2 calculate the jacobian at x and */
/* return this matrix in fjac. do not alter fvec. */
/* --------- */
/* return */
/* end */
/* the value of iflag should not be changed by fcn unless */
/* the user wants to terminate execution of hybrj1. */
/* in this case set iflag to a negative integer. */
/* n is a positive integer input variable set to the number */
/* of functions and variables. */
/* x is an array of length n. on input x must contain */
/* an initial estimate of the solution vector. on output x */
/* contains the final estimate of the solution vector. */
/* fvec is an output array of length n which contains */
/* the functions evaluated at the output x. */
/* fjac is an output n by n array which contains the */
/* orthogonal matrix q produced by the qr factorization */
/* of the final approximate jacobian. */
/* ldfjac is a positive integer input variable not less than n */
/* which specifies the leading dimension of the array fjac. */
/* tol is a nonnegative input variable. termination occurs */
/* when the algorithm estimates that the relative error */
/* between x and the solution is at most tol. */
/* info is an integer output variable. if the user has */
/* terminated execution, info is set to the (negative) */
/* value of iflag. see description of fcn. otherwise, */
/* info is set as follows. */
/* info = 0 improper input parameters. */
/* info = 1 algorithm estimates that the relative error */
/* between x and the solution is at most tol. */
/* info = 2 number of calls to fcn with iflag = 1 has */
/* reached 100*(n+1). */
/* info = 3 tol is too small. no further improvement in */
/* the approximate solution x is possible. */
/* info = 4 iteration is not making good progress. */
/* wa is a work array of length lwa. */
/* lwa is a positive integer input variable not less than */
/* (n*(n+13))/2. */
/* subprograms called */
/* user-supplied ...... fcn */
/* minpack-supplied ... hybrj */
/* argonne national laboratory. minpack project. march 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
/* ********** */
/* Parameter adjustments */
--fvec;
--x;
fjac_dim1 = *ldfjac;
fjac_offset = 1 + fjac_dim1 * 1;
fjac -= fjac_offset;
--wa;
/* Function Body */
*info = 0;
/* check the input parameters for errors. */
if (*n <= 0 || *ldfjac < *n || *tol < 0. || *lwa < *n * (*n + 13) / 2) {
/* goto L20; */
return;
}
/* call hybrj. */
maxfev = (*n + 1) * 100;
xtol = *tol;
mode = 2;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
wa[j] = 1.;
/* L10: */
}
nprint = 0;
lr = *n * (*n + 1) / 2;
__minpack_func__(hybrj)(__minpack_param_fcnder_nn__ n, &x[1], &fvec[1], &fjac[fjac_offset], ldfjac, &xtol, &
maxfev, &wa[1], &mode, &factor, &nprint, info, &nfev, &njev, &wa[*
n * 6 + 1], &lr, &wa[*n + 1], &wa[(*n << 1) + 1], &wa[*n * 3 + 1],
&wa[(*n << 2) + 1], &wa[*n * 5 + 1]);
if (*info == 5) {
*info = 4;
}
/* L20: */
return;
/* last card of subroutine hybrj1. */
} /* hybrj1_ */