forked from devernay/cminpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdogleg_.c
250 lines (204 loc) · 6.22 KB
/
dogleg_.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/* dogleg.f -- translated by f2c (version 20020621).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "minpack.h"
#include <math.h>
#include "minpackP.h"
/* Table of constant values */
__minpack_attr__
void __minpack_func__(dogleg)(const int *n, const real *r__, const int *lr,
const real *diag, const real *qtb, const real *delta, real *x,
real *wa1, real *wa2)
{
/* System generated locals */
int i__1, i__2;
real d__1, d__2, d__3, d__4;
/* Local variables */
int i__, j, k, l, jj, jp1;
real sum, temp, alpha, bnorm;
real gnorm, qnorm, epsmch;
real sgnorm;
const int c__1 = 1;
/* ********** */
/* subroutine dogleg */
/* given an m by n matrix a, an n by n nonsingular diagonal */
/* matrix d, an m-vector b, and a positive number delta, the */
/* problem is to determine the convex combination x of the */
/* gauss-newton and scaled gradient directions that minimizes */
/* (a*x - b) in the least squares sense, subject to the */
/* restriction that the euclidean norm of d*x be at most delta. */
/* this subroutine completes the solution of the problem */
/* if it is provided with the necessary information from the */
/* qr factorization of a. that is, if a = q*r, where q has */
/* orthogonal columns and r is an upper triangular matrix, */
/* then dogleg expects the full upper triangle of r and */
/* the first n components of (q transpose)*b. */
/* the subroutine statement is */
/* subroutine dogleg(n,r,lr,diag,qtb,delta,x,wa1,wa2) */
/* where */
/* n is a positive integer input variable set to the order of r. */
/* r is an input array of length lr which must contain the upper */
/* triangular matrix r stored by rows. */
/* lr is a positive integer input variable not less than */
/* (n*(n+1))/2. */
/* diag is an input array of length n which must contain the */
/* diagonal elements of the matrix d. */
/* qtb is an input array of length n which must contain the first */
/* n elements of the vector (q transpose)*b. */
/* delta is a positive input variable which specifies an upper */
/* bound on the euclidean norm of d*x. */
/* x is an output array of length n which contains the desired */
/* convex combination of the gauss-newton direction and the */
/* scaled gradient direction. */
/* wa1 and wa2 are work arrays of length n. */
/* subprograms called */
/* minpack-supplied ... dpmpar,enorm */
/* fortran-supplied ... dabs,dmax1,dmin1,dsqrt */
/* argonne national laboratory. minpack project. march 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
/* ********** */
/* Parameter adjustments */
--wa2;
--wa1;
--x;
--qtb;
--diag;
--r__;
(void)lr;
/* Function Body */
/* epsmch is the machine precision. */
epsmch = __minpack_func__(dpmpar)(&c__1);
/* first, calculate the gauss-newton direction. */
jj = *n * (*n + 1) / 2 + 1;
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
j = *n - k + 1;
jp1 = j + 1;
jj -= k;
l = jj + 1;
sum = 0.;
if (*n < jp1) {
goto L20;
}
i__2 = *n;
for (i__ = jp1; i__ <= i__2; ++i__) {
sum += r__[l] * x[i__];
++l;
/* L10: */
}
L20:
temp = r__[jj];
if (temp != 0.) {
goto L40;
}
l = j;
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
d__2 = temp, d__3 = fabs(r__[l]);
temp = max(d__2,d__3);
l = l + *n - i__;
/* L30: */
}
temp = epsmch * temp;
if (temp == 0.) {
temp = epsmch;
}
L40:
x[j] = (qtb[j] - sum) / temp;
/* L50: */
}
/* test whether the gauss-newton direction is acceptable. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
wa1[j] = 0.;
wa2[j] = diag[j] * x[j];
/* L60: */
}
qnorm = __minpack_func__(enorm)(n, &wa2[1]);
if (qnorm <= *delta) {
/* goto L140; */
return;
}
/* the gauss-newton direction is not acceptable. */
/* next, calculate the scaled gradient direction. */
l = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp = qtb[j];
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
wa1[i__] += r__[l] * temp;
++l;
/* L70: */
}
wa1[j] /= diag[j];
/* L80: */
}
/* calculate the norm of the scaled gradient and test for */
/* the special case in which the scaled gradient is zero. */
gnorm = __minpack_func__(enorm)(n, &wa1[1]);
sgnorm = 0.;
alpha = *delta / qnorm;
if (gnorm == 0.) {
goto L120;
}
/* calculate the point along the scaled gradient */
/* at which the quadratic is minimized. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
wa1[j] = wa1[j] / gnorm / diag[j];
/* L90: */
}
l = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sum = 0.;
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
sum += r__[l] * wa1[i__];
++l;
/* L100: */
}
wa2[j] = sum;
/* L110: */
}
temp = __minpack_func__(enorm)(n, &wa2[1]);
sgnorm = gnorm / temp / temp;
/* test whether the scaled gradient direction is acceptable. */
alpha = 0.;
if (sgnorm >= *delta) {
goto L120;
}
/* the scaled gradient direction is not acceptable. */
/* finally, calculate the point along the dogleg */
/* at which the quadratic is minimized. */
bnorm = __minpack_func__(enorm)(n, &qtb[1]);
temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / *delta);
/* Computing 2nd power */
d__1 = sgnorm / *delta;
/* Computing 2nd power */
d__2 = temp - *delta / qnorm;
/* Computing 2nd power */
d__3 = *delta / qnorm;
/* Computing 2nd power */
d__4 = sgnorm / *delta;
temp = temp - *delta / qnorm * (d__1 * d__1) + sqrt(d__2 * d__2 + (1. -
d__3 * d__3) * (1. - d__4 * d__4));
/* Computing 2nd power */
d__1 = sgnorm / *delta;
alpha = *delta / qnorm * (1. - d__1 * d__1) / temp;
L120:
/* form appropriate convex combination of the gauss-newton */
/* direction and the scaled gradient direction. */
temp = (1. - alpha) * min(sgnorm,*delta);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
x[j] = temp * wa1[j] + alpha * x[j];
/* L130: */
}
/* L140: */
return;
/* last card of subroutine dogleg. */
} /* dogleg_ */