forked from devernay/cminpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcovar1.c
166 lines (133 loc) · 4.97 KB
/
covar1.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include "cminpack.h"
#include <math.h>
#include "cminpackP.h"
/* covar1 estimates the variance-covariance matrix:
C = sigma**2 (JtJ)**+
where (JtJ)**+ is the inverse of JtJ or the pseudo-inverse of JtJ (in case J does not have full rank),
and sigma**2 = fsumsq / (m - k)
where fsumsq is the residual sum of squares and k is the rank of J.
*/
__cminpack_attr__
int __cminpack_func__(covar1)(int m, int n, real fsumsq, real *r, int ldr,
const int *ipvt, real tol, real *wa)
{
/* Local variables */
int i, j, k, l, ii, jj;
int sing;
real temp, tolr;
/* ********** */
/* subroutine covar */
/* given an m by n matrix a, the problem is to determine */
/* the covariance matrix corresponding to a, defined as */
/* t */
/* inverse(a *a) . */
/* this subroutine completes the solution of the problem */
/* if it is provided with the necessary information from the */
/* qr factorization, with column pivoting, of a. that is, if */
/* a*p = q*r, where p is a permutation matrix, q has orthogonal */
/* columns, and r is an upper triangular matrix with diagonal */
/* elements of nonincreasing magnitude, then covar expects */
/* the full upper triangle of r and the permutation matrix p. */
/* the covariance matrix is then computed as */
/* t t */
/* p*inverse(r *r)*p . */
/* if a is nearly rank deficient, it may be desirable to compute */
/* the covariance matrix corresponding to the linearly independent */
/* columns of a. to define the numerical rank of a, covar uses */
/* the tolerance tol. if l is the largest integer such that */
/* abs(r(l,l)) .gt. tol*abs(r(1,1)) , */
/* then covar computes the covariance matrix corresponding to */
/* the first l columns of r. for k greater than l, column */
/* and row ipvt(k) of the covariance matrix are set to zero. */
/* the subroutine statement is */
/* subroutine covar(n,r,ldr,ipvt,tol,wa) */
/* where */
/* n is a positive integer input variable set to the order of r. */
/* r is an n by n array. on input the full upper triangle must */
/* contain the full upper triangle of the matrix r. on output */
/* r contains the square symmetric covariance matrix. */
/* ldr is a positive integer input variable not less than n */
/* which specifies the leading dimension of the array r. */
/* ipvt is an integer input array of length n which defines the */
/* permutation matrix p such that a*p = q*r. column j of p */
/* is column ipvt(j) of the identity matrix. */
/* tol is a nonnegative input variable used to define the */
/* numerical rank of a in the manner described above. */
/* wa is a work array of length n. */
/* subprograms called */
/* fortran-supplied ... dabs */
/* argonne national laboratory. minpack project. august 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
/* ********** */
tolr = tol * fabs(r[0]);
/* form the inverse of r in the full upper triangle of r. */
l = -1;
for (k = 0; k < n; ++k) {
if (fabs(r[k + k * ldr]) <= tolr) {
break;
}
r[k + k * ldr] = 1. / r[k + k * ldr];
if (k > 0) {
for (j = 0; j < k; ++j) {
// coverity[copy_paste_error]
temp = r[k + k * ldr] * r[j + k * ldr];
r[j + k * ldr] = 0.;
for (i = 0; i <= j; ++i) {
r[i + k * ldr] -= temp * r[i + j * ldr];
}
}
}
l = k;
}
/* form the full upper triangle of the inverse of (r transpose)*r */
/* in the full upper triangle of r. */
if (l >= 0) {
for (k = 0; k <= l; ++k) {
if (k > 0) {
for (j = 0; j < k; ++j) {
temp = r[j + k * ldr];
for (i = 0; i <= j; ++i) {
r[i + j * ldr] += temp * r[i + k * ldr];
}
}
}
temp = r[k + k * ldr];
for (i = 0; i <= k; ++i) {
r[i + k * ldr] *= temp;
}
}
}
/* form the full lower triangle of the covariance matrix */
/* in the strict lower triangle of r and in wa. */
for (j = 0; j < n; ++j) {
jj = ipvt[j]-1;
sing = j > l;
for (i = 0; i <= j; ++i) {
if (sing) {
r[i + j * ldr] = 0.;
}
ii = ipvt[i]-1;
if (ii > jj) {
r[ii + jj * ldr] = r[i + j * ldr];
}
else if (ii < jj) {
r[jj + ii * ldr] = r[i + j * ldr];
}
}
wa[jj] = r[j + j * ldr];
}
/* symmetrize the covariance matrix in r. */
temp = fsumsq / (m - (l + 1));
for (j = 0; j < n; ++j) {
for (i = 0; i < j; ++i) {
r[j + i * ldr] *= temp;
r[i + j * ldr] = r[j + i * ldr];
}
r[j + j * ldr] = temp * wa[j];
}
/* last card of subroutine covar. */
if (l == (n - 1)) {
return 0;
}
return l + 1;
} /* covar_ */