-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy pathsubmitit_train.py
188 lines (155 loc) · 5.72 KB
/
submitit_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the CC-by-NC license found in the
# LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# A script to run multinode training with submitit.
# --------------------------------------------------------
import argparse
import logging
import os
import sys
import uuid
from pathlib import Path
import submitit
import train
logger = logging.getLogger(__name__)
def parse_args():
trainer_parser = train.get_args_parser()
parser = argparse.ArgumentParser(
"Submitit for flow_matching training", parents=[trainer_parser]
)
parser.add_argument(
"--ngpus", default=8, type=int, help="Number of gpus to request on each node"
)
parser.add_argument(
"--nodes", default=8, type=int, help="Number of nodes to request"
)
parser.add_argument("--timeout", default=4320, type=int, help="Duration of the job")
parser.add_argument(
"--job_dir", default="", type=str, help="Job dir. Leave empty for automatic."
)
parser.add_argument(
"--shared_dir",
default="/checkpoint",
type=str,
help="Directory shared among the nodes. A directory named USER/experiments is created under shared_dir that is used to coordinate in distributed mode.",
)
parser.add_argument(
"--partition", default="learnlab", type=str, help="Partition where to submit"
)
parser.add_argument(
"--constraint",
default="",
type=str,
help="Slurm constraint eg.: ampere80gb For using A100s or volta32gb for using V100s.",
)
parser.add_argument(
"--comment", default="", type=str, help="Comment to pass to scheduler"
)
parser.add_argument("--qos", default="", type=str, help="Slurm QOS")
parser.add_argument("--account", default="", type=str, help="Slurm account")
parser.add_argument(
"--exclude",
default="",
type=str,
help="Exclude certain nodes from the slurm job.",
)
return parser.parse_args()
def get_shared_folder(shared_dir: str) -> Path:
user = os.getenv("USER")
if Path(shared_dir).is_dir():
p = Path(shared_dir) / user / "experiments"
p.mkdir(exist_ok=True)
return p
raise RuntimeError("No shared folder available")
def get_init_file(shared_dir: str):
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder(shared_dir)), exist_ok=True)
init_file = get_shared_folder(shared_dir) / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
class Trainer(object):
def __init__(self, args):
self.args = args
def __call__(self):
import train
self._setup_gpu_args()
train.main(self.args)
def checkpoint(self):
import os
import submitit
self.args.dist_url = get_init_file(self.args.shared_dir).as_uri()
checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth")
if os.path.exists(checkpoint_file) and not self.args.eval_only:
self.args.resume = checkpoint_file
logger.info("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
import submitit
job_env = submitit.JobEnvironment()
self.args.output_dir = str(self.args.output_dir).replace(
"%j", str(job_env.job_id)
)
self.args.log_dir = self.args.output_dir
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks
logger.info(
f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}"
)
def main():
args = parse_args()
if args.job_dir == "":
args.job_dir = get_shared_folder(args.shared_dir) / "%j"
# Note that the folder will depend on the job_id, to easily track experiments
executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)
num_gpus_per_node = args.ngpus
nodes = args.nodes
timeout_min = args.timeout
partition = args.partition
exclude = args.exclude
kwargs = {}
if len(args.constraint):
kwargs["slurm_constraint"] = args.constraint
if args.comment:
kwargs["slurm_comment"] = args.comment
if args.qos:
kwargs["slurm_qos"] = args.qos
if args.account:
kwargs["slurm_account"] = args.account
executor.update_parameters(
mem_gb=40 * num_gpus_per_node,
gpus_per_node=num_gpus_per_node,
tasks_per_node=num_gpus_per_node, # one task per GPU
cpus_per_task=10,
nodes=nodes,
timeout_min=timeout_min, # max is 60 * 72
# Below are cluster dependent parameters
slurm_partition=partition,
slurm_signal_delay_s=120,
slurm_exclude=exclude,
**kwargs,
)
executor.update_parameters(name="flow_matching")
args.dist_url = get_init_file(args.shared_dir).as_uri()
args.output_dir = args.job_dir
trainer = Trainer(args)
job = executor.submit(trainer)
# print("Submitted job_id:", job.job_id)
logger.info(f"Submitted job {job.job_id}")
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
stream=sys.stdout,
format="%(asctime)s %(levelname)-8s %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
main()