From ddf53c54c3166aa39ee2e0d22d16092b30d0c342 Mon Sep 17 00:00:00 2001 From: ezzeldean Date: Fri, 20 Sep 2024 08:32:41 +0300 Subject: [PATCH] Add files via upload --- DataScienceEcosystem.ipynb | 157 +++++++++++++++++++++++++++++++++++++ 1 file changed, 157 insertions(+) create mode 100644 DataScienceEcosystem.ipynb diff --git a/DataScienceEcosystem.ipynb b/DataScienceEcosystem.ipynb new file mode 100644 index 0000000..cd810cd --- /dev/null +++ b/DataScienceEcosystem.ipynb @@ -0,0 +1,157 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "91ac5847-9baa-4e25-99ca-5881fc5f2958", + "metadata": {}, + "source": [ + "# Data Science Tools and Ecosystem" + ] + }, + { + "cell_type": "markdown", + "id": "c7655284-0775-4f91-8008-19df2a8e8eb7", + "metadata": {}, + "source": [ + "In this notebook, Data Science Tools and Ecosystem are summarized." + ] + }, + { + "cell_type": "markdown", + "id": "a4b1dee5-dd59-4fc5-b750-d1359c0bc894", + "metadata": {}, + "source": [ + "**Objectives**\n", + " \n", + "- List popular languages for Data Science.\n", + "- Identify key libraries used in Data Science.\n", + "- Explain the conversion of time units (e.g., minutes to hours).\n", + "- Describe open-source tools for data science development.\n", + "- Understand basic arithmetic operations in Python." + ] + }, + { + "cell_type": "markdown", + "id": "f74728fd-0f3d-4379-a7d5-b4fd38eefebf", + "metadata": {}, + "source": [ + "# Some of the popular languages that Data Scientists use are:\n", + "\n", + "01. Python\n", + "02. R\n", + "03. SQL" + ] + }, + { + "cell_type": "markdown", + "id": "8b7e4bd2-fb5e-4a14-88ef-f9da420ac312", + "metadata": {}, + "source": [ + "# Some of the commonly used libraries used by Data Scientists include:\n", + "\n", + "01. Pandas\n", + "02. NumPy\n", + "03. scikit-learn" + ] + }, + { + "cell_type": "markdown", + "id": "9ffc6231-a09b-48d9-84d0-bf27456ecacf", + "metadata": {}, + "source": [ + "# Data Science Tools\n", + "\n", + "|Data Science Tools|\n", + "|------------------|\n", + "| Hadoop |\n", + "| RStudio |\n", + "| Apache Spark |" + ] + }, + { + "cell_type": "markdown", + "id": "ae24edad-f46a-4e08-8751-75470ca5253b", + "metadata": {}, + "source": [ + "### Below are a few examples of evaluating arithmetic expressions in Python" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "d4f48efb-1443-46fa-ba5d-2f02b0101196", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "17" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# This a simple arithmetic expression to mutiply then add integers\n", + "\n", + "(3*4)+5" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "de583323-f377-4dbd-b6f8-61ce8f8a976a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.3333333333333335" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# This will convert 200 minutes to hours by diving by 60\n", + "\n", + "200/60" + ] + }, + { + "cell_type": "markdown", + "id": "988c13be-2271-4dda-a270-adf0649afa5b", + "metadata": {}, + "source": [ + "## Author\n", + "\n", + "Ezz El Dean Hashish" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}