-
Notifications
You must be signed in to change notification settings - Fork 120
/
plotter.py
executable file
·979 lines (730 loc) · 32.5 KB
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
"""Contains a base class for a drawing robot."""
from time import sleep, monotonic
import json
import pprint
import math
import readchar
import tqdm
import pigpio
import numpy
class Plotter:
def __init__(
self,
virtual: bool = False, # a virtual plotter runs in software only
turtle: bool = False, # create a turtle graphics plotter
turtle_coarseness=None, # a factor in degrees representing servo resolution
# ----------------- geometry of the plotter -----------------
bounds: tuple = [-10, 5, 10, 15], # the maximum rectangular drawing area
# ----------------- naive calculation values -----------------
servo_1_parked_pw: int = 1500, # pulse-widths when parked
servo_2_parked_pw: int = 1500,
servo_1_degree_ms: float = -10, # milliseconds pulse-width per degree
servo_2_degree_ms: float = 10,
servo_1_parked_angle: float = 0, # the arm angle in the parked position
servo_2_parked_angle: float = 0,
# ----------------- hysteresis -----------------
hysteresis_correction_1: float = 0, # hardware error compensation
hysteresis_correction_2: float = 0,
# ----------------- servo angles and pulse-widths in lists -----------------
servo_1_angle_pws: tuple = (), # pulse-widths for various angles
servo_2_angle_pws: tuple = (),
# ----------------- servo angles and pulse-widths in lists (bi-directional) ------
servo_1_angle_pws_bidi: tuple = (), # bi-directional pulse-widths for various angles
servo_2_angle_pws_bidi: tuple = (),
# ----------------- the pen -----------------
pw_up: int = None, # pulse-widths for pen up/down
pw_down: int = None,
# ----------------- physical control -----------------
angular_step: float = None, # default step of the servos in degrees
wait: float = None, # default wait time between operations
resolution: float = None, # default resolution of the plotter in cm
):
self.last_moved = monotonic()
self.virtual = virtual
self.angle_1 = servo_1_parked_angle
self.angle_2 = servo_2_parked_angle
if turtle:
try:
from turtle import Turtle, Screen
self.setup_turtle(turtle_coarseness)
self.turtle.showturtle()
except ModuleNotFoundError:
self.turtle = False
print("Turtle mode unavailable")
else:
self.turtle = False
self.bounds = bounds
# if pulse-widths to angles are supplied for each servo, we will feed them to
# numpy.polyfit(), to produce a function for each one. Otherwise, we will use a simple
# approximation based on a centre of travel of 1500µS and 10µS per degree
self.servo_1_parked_pw = servo_1_parked_pw
self.servo_1_degree_ms = servo_1_degree_ms
self.servo_1_parked_angle = servo_1_parked_angle
self.hysteresis_correction_1 = hysteresis_correction_1
if servo_1_angle_pws_bidi:
# use the bi-directional values to obtain mean values, and a hysteresis correction value
servo_1_angle_pws = []
differences = []
for angle, pws in servo_1_angle_pws_bidi.items():
pw = (pws["acw"] + pws["cw"]) / 2
servo_1_angle_pws.append([angle, pw])
differences.append((pws["acw"] - pws["cw"]) / 2)
self.hysteresis_correction_1 = numpy.mean(differences)
if servo_1_angle_pws:
servo_1_array = numpy.array(servo_1_angle_pws)
self.angles_to_pw_1 = numpy.poly1d(
numpy.polyfit(servo_1_array[:, 0], servo_1_array[:, 1], 3)
)
else:
self.angles_to_pw_1 = self.naive_angles_to_pulse_widths_1
self.servo_2_parked_pw = servo_2_parked_pw
self.servo_2_degree_ms = servo_2_degree_ms
self.servo_2_parked_angle = servo_2_parked_angle
self.hysteresis_correction_2 = hysteresis_correction_2
if servo_2_angle_pws_bidi:
# use the bi-directional values to obtain mean values, and a hysteresis correction value
servo_2_angle_pws = []
differences = []
for angle, pws in servo_2_angle_pws_bidi.items():
pw = (pws["acw"] + pws["cw"]) / 2
servo_2_angle_pws.append([angle, pw])
differences.append((pws["acw"] - pws["cw"]) / 2)
self.hysteresis_correction_2 = numpy.mean(differences)
if servo_2_angle_pws:
servo_2_array = numpy.array(servo_2_angle_pws)
self.angles_to_pw_2 = numpy.poly1d(
numpy.polyfit(servo_2_array[:, 0], servo_2_array[:, 1], 3)
)
else:
self.angles_to_pw_2 = self.naive_angles_to_pulse_widths_2
# set some initial values required for moving methods
self.previous_pw_1 = self.previous_pw_2 = 0
self.active_hysteresis_correction_1 = self.active_hysteresis_correction_2 = 0
self.reset_report()
if self.virtual:
self.wait = wait or 0
self.virtualise()
else:
try:
pigpio.exceptions = False
# instantiate this Raspberry Pi as a pigpio.pi() instance
self.rpi = pigpio.pi()
# the pulse frequency should be no higher than 100Hz - higher values could
# (supposedly) # damage the servos
self.rpi.set_PWM_frequency(14, 50)
self.rpi.set_PWM_frequency(15, 50)
pigpio.exceptions = True
self.virtual = False
# by default we use a wait factor of 0.01 seconds for better control
self.wait = wait if wait is not None else 0.01
except AttributeError:
print("pigpio daemon is not available; running in virtual mode")
self.virtualise()
self.wait = wait if wait is not None else 0
# create the pen object
pw_up = pw_up or 1400
pw_down = pw_down or 1600
self.pen = Pen(bg=self, pw_up=pw_up, pw_down=pw_down, virtual=self.virtual)
self.angular_step = angular_step or 0.1
self.resolution = resolution or 0.1
self.set_angles(self.servo_1_parked_angle, self.servo_2_parked_angle)
sleep(1)
self.status()
def virtualise(self):
print("Initialising virtual BrachioGraph")
self.virtual_pw_1 = self.angles_to_pw_1(-90)
self.virtual_pw_2 = self.angles_to_pw_2(90)
self.virtual = True
def setup_turtle(self, coarseness):
"""Initialises a Python turtle based on this plotter."""
from turtle_plotter import BaseTurtle
self.turtle = BaseTurtle(
window_size=850, # width and height of the turtle canvas
speed=10, # how fast to draw
machine=self,
coarseness=coarseness,
)
self.turtle.draw_grid()
self.t = self.turtle
# ----------------- plotting methods -----------------
def plot_file(self, filename="", bounds=None, angular_step=None, wait=None, resolution=None):
"""Plots and image encoded as JSON lines in ``filename``. Passes the lines in the supplied
JSON file to ``plot_lines()``.
"""
bounds = bounds or self.bounds
with open(filename, "r") as line_file:
lines = json.load(line_file)
self.plot_lines(lines, bounds, angular_step, wait, resolution, flip=True)
def plot_lines(
self,
lines=[],
bounds=None,
angular_step=None,
wait=None,
resolution=None,
flip=False,
rotate=False,
):
"""Passes each segment of each line in lines to ``draw_line()``"""
bounds = bounds or self.bounds
lines = self.rotate_and_scale_lines(lines=lines, bounds=bounds, flip=True)
for line in tqdm.tqdm(lines, desc="Lines", leave=False):
x, y = line[0]
# only if we are not within 1mm of the start of the line, lift pen and go there
if (round(self.x, 1), round(self.y, 1)) != (round(x, 1), round(y, 1)):
self.xy(x, y, angular_step, wait, resolution)
for point in line[1:]:
x, y = point
self.xy(x, y, angular_step, wait, resolution, draw=True)
self.park()
# ----------------- pattern-drawing methods -----------------
def box(
self, bounds=None, angular_step=None, wait=None, resolution=None, repeat=1, reverse=False
):
"""Draw a box marked out by the ``bounds``."""
bounds = bounds or self.bounds
if not bounds:
return "Box drawing is only possible when the bounds attribute is set."
self.xy(bounds[0], bounds[1], angular_step, wait, resolution)
for r in tqdm.tqdm(tqdm.trange(repeat), desc="Iteration", leave=False):
if not reverse:
self.xy(bounds[2], bounds[1], angular_step, wait, resolution, draw=True)
self.xy(bounds[2], bounds[3], angular_step, wait, resolution, draw=True)
self.xy(bounds[0], bounds[3], angular_step, wait, resolution, draw=True)
self.xy(bounds[0], bounds[1], angular_step, wait, resolution, draw=True)
else:
self.xy(bounds[0], bounds[3], angular_step, wait, resolution, draw=True)
self.xy(bounds[2], bounds[3], angular_step, wait, resolution, draw=True)
self.xy(bounds[2], bounds[1], angular_step, wait, resolution, draw=True)
self.xy(bounds[0], bounds[1], angular_step, wait, resolution, draw=True)
self.park()
def test_pattern(
self,
lines=4,
bounds=None,
angular_step=None,
wait=None,
resolution=None,
repeat=1,
reverse=False,
both=False,
):
self.vertical_lines(lines, bounds, angular_step, wait, resolution, repeat, reverse, both)
self.horizontal_lines(lines, bounds, angular_step, wait, resolution, repeat, reverse, both)
def vertical_lines(
self,
lines=4,
bounds=None,
angular_step=None,
wait=None,
resolution=None,
repeat=1,
reverse=False,
both=False,
):
bounds = bounds or self.bounds
if not bounds:
return "Plotting a test pattern is only possible when the bounds attribute is set."
if not reverse:
top_y = self.top
bottom_y = self.bottom
else:
bottom_y = self.top
top_y = self.bottom
for n in range(repeat):
step = (self.right - self.left) / lines
x = self.left
while x <= self.right:
self.draw_line((x, top_y), (x, bottom_y), angular_step, wait, resolution, both)
x = x + step
self.park()
def horizontal_lines(
self,
lines=4,
bounds=None,
angular_step=None,
wait=None,
resolution=None,
repeat=1,
reverse=False,
both=False,
):
bounds = bounds or self.bounds
if not bounds:
return "Plotting a test pattern is only possible when the bounds attribute is set."
if not reverse:
min_x = self.left
max_x = self.right
else:
max_x = self.left
min_x = self.right
for n in range(repeat):
step = (self.bottom - self.top) / lines
y = self.top
while y >= self.bottom:
self.draw_line((min_x, y), (max_x, y), angular_step, wait, resolution, both)
y = y + step
self.park()
# ----------------- x/y drawing methods -----------------
def draw_line(
self, start=(0, 0), end=(0, 0), angular_step=None, wait=None, resolution=None, both=False
):
"""Draws a line between two points"""
start_x, start_y = start
end_x, end_y = end
self.xy(start_x, start_y, angular_step, wait, resolution)
self.xy(end_x, end_y, angular_step, wait, resolution, draw=True)
if both:
self.xy(start_x, start_y, angular_step, wait, resolution, draw=True)
def xy(self, x=None, y=None, angular_step=None, wait=None, resolution=None, draw=False):
"""Moves the pen to the xy position; optionally draws while doing it. ``None`` for x or y
means that the pen will not be moved in that dimension.
"""
wait = wait if wait is not None else self.wait
resolution = resolution or self.resolution
x = x if x is not None else self.x
y = y if y is not None else self.y
(angle_1, angle_2) = self.xy_to_angles(x, y)
if draw:
# calculate how many steps we need for this move, and the x/y length of each
(x_length, y_length) = (x - self.x, y - self.y)
length = math.sqrt(x_length**2 + y_length**2)
no_of_steps = round(length / resolution) or 1
if no_of_steps < 100:
disable_tqdm = True
else:
disable_tqdm = False
(length_of_step_x, length_of_step_y) = (x_length / no_of_steps, y_length / no_of_steps)
for step in range(no_of_steps):
self.x = self.x + length_of_step_x
self.y = self.y + length_of_step_y
angle_1, angle_2 = self.xy_to_angles(self.x, self.y)
self.move_angles(angle_1, angle_2, angular_step, wait, draw)
else:
self.move_angles(angle_1, angle_2, angular_step, wait, draw)
# ----------------- servo angle drawing methods -----------------
def move_angles(self, angle_1=None, angle_2=None, angular_step=None, wait=None, draw=False):
"""Moves the servo motors to the specified angles step-by-step, calling ``set_angles()`` for
each step. ``None`` for one of the angles means that that servo will not move.
"""
wait = wait if wait is not None else self.wait
angular_step = angular_step or self.angular_step
if draw:
self.pen.down()
else:
self.pen.up()
diff_1 = diff_2 = 0
if angle_1 is not None:
diff_1 = angle_1 - self.angle_1
if angle_2 is not None:
diff_2 = angle_2 - self.angle_2
no_of_steps = int(max(map(abs, (diff_1 / angular_step, diff_2 / angular_step)))) or 1
if no_of_steps < 100:
disable_tqdm = True
else:
disable_tqdm = False
(length_of_step_1, length_of_step_2) = (diff_1 / no_of_steps, diff_2 / no_of_steps)
for step in tqdm.tqdm(
range(no_of_steps), desc="Progress", leave=False, disable=disable_tqdm
):
self.angle_1 = self.angle_1 + length_of_step_1
self.angle_2 = self.angle_2 + length_of_step_2
time_since_last_moved = monotonic() - self.last_moved
if time_since_last_moved < wait:
sleep(wait - time_since_last_moved)
self.set_angles(self.angle_1, self.angle_2)
self.last_moved = monotonic()
# ----------------- pen-moving methods -----------------
def set_angles(self, angle_1=None, angle_2=None):
"""Moves the servo motors to the specified angles immediately. Relies upon getting accurate
pulse-width values. ``None`` for one of the angles means that that servo will not move.
Calls ``set_pulse_widths()``.
Sets ``current_x``, ``current_y``.
"""
pw_1 = pw_2 = None
if angle_1 is not None:
pw_1 = self.angles_to_pw_1(angle_1)
if pw_1 > self.previous_pw_1:
self.active_hysteresis_correction_1 = self.hysteresis_correction_1
elif pw_1 < self.previous_pw_1:
self.active_hysteresis_correction_1 = -self.hysteresis_correction_1
self.previous_pw_1 = pw_1
pw_1 = pw_1 + self.active_hysteresis_correction_1
self.angle_1 = angle_1
self.angles_used_1.add(int(angle_1))
self.pulse_widths_used_1.add(int(pw_1))
if angle_2 is not None:
pw_2 = self.angles_to_pw_2(angle_2)
if pw_2 > self.previous_pw_2:
self.active_hysteresis_correction_2 = self.hysteresis_correction_2
elif pw_2 < self.previous_pw_2:
self.active_hysteresis_correction_2 = -self.hysteresis_correction_2
self.previous_pw_2 = pw_2
pw_2 = pw_2 + self.active_hysteresis_correction_2
self.angle_2 = angle_2
self.angles_used_2.add(int(angle_2))
self.pulse_widths_used_2.add(int(pw_2))
self.x, self.y = self.angles_to_xy(self.angle_1, self.angle_2)
if self.turtle:
self.turtle.set_angles(self.angle_1, self.angle_2)
self.set_pulse_widths(pw_1, pw_2)
def park(self):
"""Park the plotter."""
if self.virtual:
print("Parking")
self.pen.up()
self.move_angles(self.servo_1_parked_angle, self.servo_2_parked_angle)
# ----------------- angles-to-pulse-widths methods -----------------
def naive_angles_to_pulse_widths_1(self, angle):
"""A rule-of-thumb calculation of pulse-width for the desired servo angle"""
return (angle - self.servo_1_parked_angle) * self.servo_1_degree_ms + self.servo_1_parked_pw
def naive_angles_to_pulse_widths_2(self, angle):
"""A rule-of-thumb calculation of pulse-width for the desired servo angle"""
return (angle - self.servo_2_parked_angle) * self.servo_2_degree_ms + self.servo_2_parked_pw
# ----------------- line-processing methods -----------------
def rotate_and_scale_lines(self, lines=[], rotate=False, flip=False, bounds=None):
"""Rotates and scales the lines so that they best fit the available drawing ``bounds``."""
(
rotate,
x_mid_point,
y_mid_point,
box_x_mid_point,
box_y_mid_point,
divider,
) = self.analyse_lines(lines, rotate, bounds)
for line in lines:
for point in line:
if rotate:
point[0], point[1] = point[1], point[0]
x = point[0]
x = x - x_mid_point # shift x values so that they have zero as their mid-point
x = x / divider # scale x values to fit in our box width
if flip ^ rotate: # flip before moving back into drawing pane
x = -x
# shift x values so that they have the box x midpoint as their endpoint
x = x + box_x_mid_point
y = point[1]
y = y - y_mid_point
y = y / divider
y = y + box_y_mid_point
point[0], point[1] = x, y
return lines
def analyse_lines(self, lines=[], rotate=False, bounds=None):
"""
Analyses the co-ordinates in ``lines``, and returns:
* ``rotate``: ``True`` if the image needs to be rotated by 90˚ in order to fit better
* ``x_mid_point``, ``y_mid_point``: mid-points of the image
* ``box_x_mid_point``, ``box_y_mid_point``: mid-points of the ``bounds``
* ``divider``: the value by which we must divide all x and y so that they will fit safely
inside the bounds.
``lines`` is a tuple itself containing a number of tuples, each of which contains a number
of 2-tuples::
[
[
[3, 4], # |
[2, 4], # |
[1, 5], # a single point in a line # | a list of points defining a line
[3, 5], # |
[3, 7], # |
],
[ # all the lines
[...],
[...],
],
[
[...],
[...],
],
]
"""
bounds = bounds or self.bounds
# First, we create a pair of empty sets for all the x and y values in all of the lines of
# the plot data.
x_values_in_lines = set()
y_values_in_lines = set()
# Loop over each line and all the points in each line, to get sets of all the x and y
# values:
for line in lines:
x_values_in_line, y_values_in_line = zip(*line)
x_values_in_lines.update(x_values_in_line)
y_values_in_lines.update(y_values_in_line)
# Identify the minimum and maximum values.
min_x, max_x = min(x_values_in_lines), max(x_values_in_lines)
min_y, max_y = min(y_values_in_lines), max(y_values_in_lines)
# Identify the range they span.
x_range, y_range = max_x - min_x, max_y - min_y
box_x_range, box_y_range = bounds[2] - bounds[0], bounds[3] - bounds[1]
# And their mid-points.
x_mid_point, y_mid_point = (max_x + min_x) / 2, (max_y + min_y) / 2
box_x_mid_point, box_y_mid_point = (bounds[0] + bounds[2]) / 2, (bounds[1] + bounds[3]) / 2
# Get a 'divider' value for each range - the value by which we must divide all x and y so
# that they will fit safely inside the bounds.
# If both image and box are in portrait orientation, or both in landscape, we don't need to
# rotate the plot.
if (x_range >= y_range and box_x_range >= box_y_range) or (
x_range <= y_range and box_x_range <= box_y_range
):
divider = max((x_range / box_x_range), (y_range / box_y_range))
rotate = False
else:
divider = max((x_range / box_y_range), (y_range / box_x_range))
rotate = True
x_mid_point, y_mid_point = y_mid_point, x_mid_point
return (rotate, x_mid_point, y_mid_point, box_x_mid_point, box_y_mid_point, divider)
# ----------------- physical control methods -----------------
def set_pulse_widths(self, pw_1=None, pw_2=None):
"""Applies the supplied pulse-width values to the servos, or pretends to, if we're in
virtual mode.
"""
if self.virtual:
if pw_1:
if 500 < pw_1 < 2500:
self.virtual_pw_1 = int(pw_1)
else:
raise ValueError
if pw_2:
if 500 < pw_2 < 2500:
self.virtual_pw_2 = int(pw_2)
else:
raise ValueError
else:
if pw_1:
self.rpi.set_servo_pulsewidth(14, pw_1)
if pw_2:
self.rpi.set_servo_pulsewidth(15, pw_2)
def get_pulse_widths(self):
"""Returns the actual pulse-widths values; if in virtual mode, returns the nominal values -
i.e. the values that they might be.
"""
if self.virtual:
actual_pulse_width_1 = self.virtual_pw_1
actual_pulse_width_2 = self.virtual_pw_2
else:
actual_pulse_width_1 = self.rpi.get_servo_pulsewidth(14)
actual_pulse_width_2 = self.rpi.get_servo_pulsewidth(15)
return (actual_pulse_width_1, actual_pulse_width_2)
def quiet(self, servos=[14, 15, 18]):
"""Stop sending pulses to the servos, so that they are no longer energised (and so that they
stop buzzing).
"""
if self.virtual:
print("Going quiet")
else:
for servo in servos:
self.rpi.set_servo_pulsewidth(servo, 0)
# ----------------- manual driving methods -----------------
def capture_pws(self):
"""
Helps capture angle/pulse-width data for the servos, as a dictionary to be used
in a Plotter definition.
"""
print(
"""
Drive each servo over a wide range of movement (do not exceed a pulse-width
range ~600 to ~2400). To capture the pulse-width value for a particular angle,
press "c", then enter the angle. For each angle, do this in both directions,
clockwise and anti-clockwise. Press "0" to exit.
"""
)
pw_1, pw_2 = self.get_pulse_widths()
pen_pw = self.pen.get_pw()
last_action = values = None
pws1_dict = {}
pws2_dict = {}
pen_pw_dict = {}
print("0 to exit, c to capture a value, v to show captured values")
print("Shoulder a: -10 A: -1 s: +10 S: +1")
print("Elbow k: -10 K: -1 l: +10 L: +1")
print("Pen z: -10 x: +10")
controls = {
"a": [-10, 0, 0, "acw"],
"A": [-1, 0, 0, "acw"],
"s": [+10, 0, 0, "cw"],
"S": [+1, 0, 0, "cw"],
"k": [0, -10, 0, "acw"],
"K": [0, -1, 0, "acw"],
"l": [0, +10, 0, "cw"],
"L": [0, +1, 0, "cw"],
"z": [0, 0, -10],
"x": [0, 0, +10],
}
while True:
# move the arms if commanded
key = readchar.readchar()
values = controls.get(key)
if values:
if values[0] or values[1] or values[2]:
previous_pw_1, previous_pw_2, previous_pen_pw = pw_1, pw_2, pen_pw
pw_1 += values[0]
pw_2 += values[1]
pen_pw += values[2]
print(f"shoulder: {pw_1}, elbow: {pw_2}, pen: {pen_pw}")
self.set_pulse_widths(pw_1, pw_2)
self.pen.pw(pen_pw)
last_action = values
elif key == "0" or key == "v":
# exit and print results
print("servo_1_angle_pws_bidi =")
pprint.pp(pws1_dict, sort_dicts=True, indent=4)
print("servo_2_angle_pws_bidi =")
pprint.pp(pws2_dict, sort_dicts=True, indent=4)
print("Pen pulse-widths =")
pprint.pp(pen_pw_dict)
if key == "0":
return
elif key == "c":
# capture a value
if not last_action:
print("Drive the servos to a new position first")
# add the values - if any - to the dictionaries
elif last_action[0]:
angle = int(input("Enter the angle of the inner arm: "))
pws1_dict.setdefault(angle, {})[last_action[3]] = pw_1
print(pws1_dict)
elif last_action[1]:
angle = int(input("Enter the angle of the outer arm: "))
pws2_dict.setdefault(angle, {})[last_action[3]] = pw_2
print(pws2_dict)
elif last_action[2]:
state = input("Enter the state of the pen ([u]p, [d]own):")
pen_pw_dict[state] = pen_pw
print(pen_pw)
def drive_xy(self):
"""Control the x/y position using the keyboard."""
while True:
key = readchar.readchar()
if key == "0":
return
elif key == "a":
self.x = self.x - 1
elif key == "s":
self.x = self.x + 1
elif key == "A":
self.x = self.x - 0.1
elif key == "S":
self.x = self.x + 0.1
elif key == "k":
self.y = self.y - 1
elif key == "l":
self.y = self.y + 1
elif key == "K":
self.y = self.y - 0.1
elif key == "L":
self.y = self.y + 0.1
print(self.x, self.y)
self.xy(self.x, self.y)
# ----------------- reporting methods -----------------
def status(self):
"""Provides a report of the plotter status. Subclasses should override this to
report on their own status."""
print("------------------------------------------")
print(" | Servo 1 | Servo 2 ")
print("----------------------|---------|---------")
pw_1, pw_2 = self.get_pulse_widths()
print(f"{'pulse-width |':>23}", f"{pw_1:>7.0f}", "|", f"{pw_2:>7.0f}")
angle_1, angle_2 = self.angle_1, self.angle_2
print(f"{'angle |':>23}", f"{angle_1:>7.0f}", "|", f"{angle_2:>7.0f}")
h1, h2 = self.hysteresis_correction_1, self.hysteresis_correction_2
print(f"{'hysteresis correction |':>23}", f"{h1:>7.1f}", "|", f"{h2:>7.1f}")
print("------------------------------------------")
print(f"{'x/y location |':>23}", f"{self.x:>7.1f}", "|", f"{self.y:>7.1f}")
print()
print("------------------------------------------")
print("pen:", self.pen.position)
print("------------------------------------------")
print(f"left: {self.left}, right: {self.right}, top: {self.top}, bottom: {self.bottom}")
print("------------------------------------------")
print(f"wait: {self.wait} seconds")
print("------------------------------------------")
print(f"resolution: {self.resolution} cm")
print("------------------------------------------")
print(f"angular step: {self.angular_step}˚")
print("------------------------------------------")
@property
def left(self):
return self.bounds[0]
@property
def bottom(self):
return self.bounds[1]
@property
def right(self):
return self.bounds[2]
@property
def top(self):
return self.bounds[3]
def reset_report(self):
self.angle_1 = self.angle_2 = None
# Create sets for recording movement of the plotter.
self.angles_used_1 = set()
self.angles_used_2 = set()
self.pulse_widths_used_1 = set()
self.pulse_widths_used_2 = set()
# ----------------- trigonometric methods -----------------
def xy_to_angles(self, x=0, y=0):
"""Return the servo angles required to reach any x/y position. This is a dummy method in
the base class; it needs to be overridden in a sub-class implementation."""
return (0, 0)
def angles_to_xy(self, angle_1, angle_2):
"""Return the servo angles required to reach any x/y position. This is a dummy method in
the base class; it needs to be overridden in a sub-class implementation."""
return (0, 0)
class Pen:
def __init__(self, bg, pw_up=1700, pw_down=1300, pin=18, transition_time=0.25, virtual=False):
self.bg = bg
self.pin = pin
self.pw_up = pw_up
self.pw_down = pw_down
self.transition_time = transition_time
self.position = "down"
self.virtual = virtual
if self.virtual:
print("Initialising virtual Pen")
else:
self.rpi = pigpio.pi()
self.rpi.set_PWM_frequency(self.pin, 50)
self.up()
def down(self):
if self.position == "up":
if self.virtual:
self.virtual_pw = self.pw_down
else:
self.ease_pen(self.pw_up, self.pw_down)
# self.rpi.set_servo_pulsewidth(self.pin, self.pw_down)
if self.bg.turtle:
self.bg.turtle.down()
self.bg.turtle.color("blue")
self.bg.turtle.width(1)
self.position = "down"
def up(self):
if self.position == "down":
if self.virtual:
self.virtual_pw = self.pw_up
else:
self.ease_pen(self.pw_down, self.pw_up)
# self.rpi.set_servo_pulsewidth(self.pin, self.pw_up)
if self.bg.turtle:
self.bg.turtle.up()
self.position = "up"
def ease_pen(self, start, end):
"""
Moves the pen gently instead of all at once. Slower but reduces marking on the paper.
"""
diff = end - start
angle = start
length_of_step = diff / abs(diff)
for i in range(abs(diff)):
angle += length_of_step
self.rpi.set_servo_pulsewidth(self.pin, angle)
sleep(0.001)
# for convenience, a quick way to set pen motor pulse-widths
def pw(self, pulse_width):
if self.virtual:
self.virtual_pw = pulse_width
else:
self.rpi.set_servo_pulsewidth(self.pin, pulse_width)
# for convenience, a quick way to get pen motor pulse-widths
def get_pw(self):
if self.virtual:
return self.virtual_pw
else:
return self.rpi.get_servo_pulsewidth(self.pin)