-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathd2d.py
491 lines (349 loc) · 16.6 KB
/
d2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import numpy as np
import tensorflow as tf
import h5py
import pandas as pd
from tensorflow.keras import layers
from tensorflow.math import reduce_prod
import matplotlib
import matplotlib.dates
class WindowGenerator():
# @property
# def train(self):
# return self.make_dataset(self.train_df)
# @property
# def val(self):
# return self.make_dataset(self.val_df)
# @property
# def test(self):
# return self.make_dataset(self.test_df)
@property
def example(self):
"""Get and cache an example batch of `inputs, labels` for plotting."""
result = getattr(self, '_example', None)
if result is None:
# No example batch was found, so get one from the `.train` dataset
result = next(iter(self.train))
# And cache it for next time
self._example = result
return result
def __init__(self, df, input_width, label_width, shift,
label_columns=None, input_columns=None,
shuffle=True, batch_size = 16):
# Store the raw data.
# self.train_df = train_df
# self.val_df = val_df
# self.test_df = test_df
# Work out the label column indices.
self.label_columns = label_columns
if label_columns is not None:
self.label_columns_indices = {name: i for i, name in
enumerate(label_columns)}
self.column_indices = {name: i for i, name in
enumerate(df.columns)}
# Do the same for the input column indices for DAS.
self.input_columns = input_columns
if input_columns is not None:
self.input_columns_indices = {name: i for i, name in
enumerate(input_columns)}
self.input_indices = {name: i for i, name in
enumerate(df.columns)}
# Work out the window parameters.
self.input_width = input_width
self.label_width = label_width
self.shift = shift
self.total_window_size = input_width + shift
self.input_slice = slice(0, input_width)
self.input_indices = np.arange(self.total_window_size)[self.input_slice]
self.label_start = self.total_window_size - self.label_width
self.labels_slice = slice(self.label_start, None)
self.label_indices = np.arange(self.total_window_size)[self.labels_slice]
ds = self.make_dataset(df,shuffle=shuffle, batch_size=batch_size)
# Split the dataset
train_split=0.7
val_split=0.2
test_split=0.1
ds_size = len(ds)
train_size = int(train_split * ds_size)
val_size = int(val_split * ds_size)
test_size = int(test_split * ds_size)
train_ds = ds.take(train_size)
val_ds = ds.skip(train_size).take(val_size)
test_ds = ds.skip(train_size).skip(val_size)
#Redoing the normalization for DAS
train_strain_in_one = []
train_dis_in_one = []
for i in train_ds.as_numpy_iterator():
train_strain_in_one.append(i[0])
train_dis_in_one.append(i[1])
train_strain_in_one = np.asarray(train_strain_in_one, dtype=np.float64)
train_dis_in_one = np.asarray(train_dis_in_one)
#print(train_dis_in_one[0])
print(len(input_columns))
train_strain_in_one = np.reshape(train_strain_in_one, (train_strain_in_one.shape[0]*train_strain_in_one.shape[1] * input_width, len(input_columns)))
train_dis_in_one = np.reshape(train_dis_in_one, (train_dis_in_one.shape[0]*train_dis_in_one.shape[1] * label_width, label_width, 1))
chan_mean = np.mean(train_strain_in_one, axis = 0)
dis_mean = np.mean(train_dis_in_one)
chan_std = np.std(train_strain_in_one, axis = 0)
dis_std = np.std(train_dis_in_one)
train_channels_normed = []
train_discharge_normed = []
for element in train_ds.as_numpy_iterator():
norm_chan = (element[0] - chan_mean) / chan_std
norm_dis = (element[1] - dis_mean) / dis_std
train_channels_normed.append(norm_chan)
train_discharge_normed.append(norm_dis)
val_channels_normed = []
val_discharge_normed = []
for element in val_ds.as_numpy_iterator():
norm_chan = (element[0] - chan_mean) / chan_std
norm_dis = (element[1] - dis_mean) / dis_std
val_channels_normed.append(norm_chan)
val_discharge_normed.append(norm_dis)
test_channels_normed = []
test_discharge_normed = []
for element in test_ds.as_numpy_iterator():
norm_chan = (element[0] - chan_mean) / chan_std
norm_dis = (element[1] - dis_mean) / dis_std
test_channels_normed.append(norm_chan)
test_discharge_normed.append(norm_dis)
if np.asarray(test_discharge_normed)[-1].shape != np.asarray(test_discharge_normed)[0].shape:
test_channels_normed.pop()
test_discharge_normed.pop()
train_dataset_normed = tf.data.Dataset.from_tensor_slices((train_channels_normed, train_discharge_normed))
val_dataset_normed = tf.data.Dataset.from_tensor_slices((val_channels_normed, val_discharge_normed))
test_dataset_normed = tf.data.Dataset.from_tensor_slices((test_channels_normed, test_discharge_normed))
# print(std_chan_mean)
# print(train_chan_mean)
# print(train_dis_mean)
# print(std_dis_mean)
self.train_ds = train_ds
self.val_ds = val_ds
self.test_ds = test_ds
self.ds = ds
self.training_non_normed = train_ds
self.train_strain_in_one = train_strain_in_one
self.train_channels_normed = train_channels_normed
self.train_dis_in_one = train_dis_in_one
self.train = train_dataset_normed
self.val = val_dataset_normed
self.test = test_dataset_normed
self.chan_mean = chan_mean
self.chan_std = chan_std
self.dis_mean = dis_mean
self.dis_std = dis_std
def __repr__(self):
return '\n'.join([
f'Total window size: {self.total_window_size}',
f'Input indices: {self.input_indices}',
f'Input column name(s): {self.input_columns}',
f'Label indices: {self.label_indices}',
f'Label column name(s): {self.label_columns}'])
def make_dataset(self, data, shuffle, batch_size):
data = np.array(data, dtype=np.float64)
ds = tf.keras.preprocessing.timeseries_dataset_from_array(
data=data,
targets=None,
sequence_length=self.total_window_size,
sequence_stride=self.input_width,
shuffle=shuffle,
seed = 1,
batch_size = batch_size) #default is 32
ds = ds.map(self.split_window)
return ds
def split_window(self, ds):
inputs = ds[:, self.input_slice, :]
labels = ds[:, self.labels_slice, :]
# print(inputs)
if self.label_columns is not None:
labels = tf.stack(
[labels[:, :, self.column_indices[name]] for name in self.label_columns],
axis=-1)
if self.input_columns is not None:
inputs = tf.stack(
[inputs[:, :, self.column_indices[name]] for name in self.input_columns],
axis=-1)
# Slicing doesn't preserve static shape information, so set the shapes
# manually. This way the `tf.data.Datasets` are easier to inspect.
inputs.set_shape([None, self.input_width, None])
labels.set_shape([None, self.label_width, None])
return inputs, labels
def compile_and_fit(model, window, patience=10, MAX_EPOCHS = 1000, learning_rate = 0.001):
early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss',
patience=patience,
mode='min')
model.compile(loss=tf.losses.MeanSquaredError(),
optimizer=tf.optimizers.Adam(learning_rate=learning_rate),
metrics=[tf.metrics.MeanAbsoluteError()])
history = model.fit(window.train, epochs=MAX_EPOCHS,
validation_data=window.val,
callbacks=[early_stopping])
return history
# NOT IN USE
# def k_fold_leave_out(n,names,models,data,input_columns,early_stop=np.nan,window_input_width = 200, learning_rate = 0.001):
# '''
# Run a k-fold analysis on folds of size n
# '''
# list_df = [data[i:i+n] for i in range(0,data.shape[0],n)]
# val_performance={}
# performance={}
# history={}
# history_dict = {}
# running_stats = pd.DataFrame()
# # train_mean = np.zeros( len(list_df) )
# # train_std = np.zeros( len(list_df) )
# # test_mean = np.zeros( len(list_df) )
# # test_std = np.zeros( len(list_df) )
# # val_mean = np.zeros( len(list_df) )
# # val_std = np.zeros( len(list_df) )
# #cross validation training
# '''
# Loop over the folds
# '''
# for k,this_data in enumerate(list_df):
# if not np.isnan(early_stop):
# if early_stop == k:
# break
# n = len(this_data)
# labels = list(this_data.index)
# data_copy = data.copy()
# train_mean, train_std, test_mean, test_std, val_mean, val_std,\
# train_df, val_df, test_df = simple_split(this_data)
# running_stats['Fold'+str(k)+'_train_mean'] = train_mean
# running_stats['Fold'+str(k)+'_train_std'] = train_std
# running_stats['Fold'+str(k)+'_val_mean'] = val_mean
# running_stats['Fold'+str(k)+'_val_std'] = val_std
# running_stats['Fold'+str(k)+'_test_mean'] = test_mean
# running_stats['Fold'+str(k)+'_test_std'] = test_std
# multi_step_window = WindowGenerator(
# input_width=window_input_width, label_width=1, shift=0,
# data=this_data,
# label_columns=['Discharge'],
# input_columns=input_columns)
# '''
# Loop over the model types
# '''
# for this_name, this_model in zip(names,models):
# history[this_name + str(k)] = compile_and_fit(this_model, multi_step_window, learning_rate = learning_rate)
# val_performance[this_name + '_fold' + str(k)] = this_model.evaluate(multi_step_window.val)
# performance[this_name + '_fold' + str(k)] = this_model.evaluate(multi_step_window.test,
# verbose=0)
# history_dict[this_name + '_fold' + str(k)] = \
# history[this_name + str(k)].history['loss']
# history_dict[this_name + '_fold' + str(k) + '_val_loss'] = \
# history[this_name + str(k)].history['val_loss']
# # k_fold_stats = {'mean_train':train_mean,
# # 'std_train':train_std,
# # 'mean_val':val_mean,
# # 'std_val':val_std,
# # 'mean_test':test_mean,
# # 'std_test':test_std}
# print('Done with fold: ' + str(k)+', chunk size: '+ str(n))
# return val_performance, performance, history, history_dict, running_mean
# """
# """
# NOT IN USE
# def k_fold(n,names,models,data,input_columns,early_stop=np.nan,window_input_width = 200, learning_rate = 0.001):
# '''
# Run a k-fold analysis on folds of size n
# '''
# list_df = [data[i:i+n] for i in range(0,data.shape[0],n)]
# val_performance={}
# performance={}
# history={}
# history_dict = {}
# # train_mean = np.zeros( len(list_df) )
# # train_std = np.zeros( len(list_df) )
# # test_mean = np.zeros( len(list_df) )
# # test_std = np.zeros( len(list_df) )
# # val_mean = np.zeros( len(list_df) )
# # val_std = np.zeros( len(list_df) )
# #cross validation training
# '''
# Loop over the folds
# '''
# for k,this_data in enumerate(list_df):
# if not np.isnan(early_stop):
# if early_stop == k:
# break
# n = len(this_data)
# labels = list(this_data.index)
# data_copy = data.copy()
# train_df = data_copy.drop(labels=labels, axis=0)
# train_mean = train_df.mean()
# train_std = train_df.std()
# val_df = this_data[int(n*0.0):int(n*0.6)]
# val_mean = val_df.mean()
# val_std = val_df.std()
# test_df = this_data[int(n*0.6):int(n*1.0)]
# test_mean = test_df.mean()
# test_std = test_df.std()
# train_df = (train_df - train_mean) / train_std
# val_df = (val_df - train_mean) / train_std
# test_df = (test_df - train_mean) / train_std
# multi_step_window = WindowGenerator(
# input_width=window_input_width, label_width=1, shift=0,
# train_df=train_df,
# val_df=val_df,
# test_df=test_df,
# label_columns=['Discharge'],
# input_columns=input_columns)
# '''
# Loop over the model types
# '''
# for this_name, this_model in zip(names,models):
# history[this_name + str(k)] = compile_and_fit(this_model, multi_step_window, learning_rate = learning_rate)
# val_performance[this_name + '_fold' + str(k)] = this_model.evaluate(multi_step_window.val)
# performance[this_name + '_fold' + str(k)] = this_model.evaluate(multi_step_window.test,
# verbose=0)
# history_dict[this_name + '_fold' + str(k) + '_loss'] = \
# history[this_name + str(k)].history['loss']
# history_dict[this_name + '_fold' + str(k) + '_val_loss'] = \
# history[this_name + str(k)].history['val_loss']
# print('Done with fold: ' + str(k))
# # k_fold_stats = {'mean_train':train_mean,
# # 'std_train':train_std,
# # 'mean_val':val_mean,
# # 'std_val':val_std,
# # 'mean_test':test_mean,
# # 'std_test':test_std}
# return val_performance, performance, history, history_dict
def import_data(filename = "/data/fast0/datasets/Rhone_data_continuous.h5", input_columns = list(np.arange(0,2308,1)), dropout = 0):
#Read in the DAS data
f = h5py.File(filename, 'r')
#Get the discharge times
times_of_discharge = matplotlib.dates.date2num(f['Times'][:])
print("Keys: %s" % f.keys())
#Assign variables to DAS and Discharge data
das_data_all = f['DAS Data'][:]
discharge = f['Discharge'][:]
#Make a Pandas dataframe of the data
df_all_chan = pd.DataFrame(das_data_all)
df_all_chan['Discharge'] = discharge
#df_all_chan['Times'] = times_of_discharge
column_indices = {name: i for i, name in enumerate(df_all_chan.columns)}
linear_model = tf.keras.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1)
])
lstm_model = tf.keras.Sequential([
# Shape [batch, time, features] => [batch, time, lstm_units]
tf.keras.layers.LSTM(32, return_sequences=False, dropout = dropout),
#tf.keras.layers.LSTM(32, return_sequences=True, dropout = dropout),
#tf.keras.layers.LSTM(32, return_sequences=False),
# Shape => [batch, time, features]
tf.keras.layers.Dense(1)
])
dnn_model = tf.keras.Sequential([
layers.Dense(32, activation='relu'),
layers.Dense(32, activation='relu'),
tf.keras.layers.Flatten(),
layers.Dense(1),
])
# conv_model = tf.keras.Sequential([
# tf.keras.layers.Conv1D(filters=32,
# kernel_size=(200,), #(window_input _width integer, )
# activation='relu'),
# tf.keras.layers.Dense(units=32, activation='relu'),
# tf.keras.layers.Dense(units=1),
# ])
return linear_model, lstm_model, dnn_model, df_all_chan, das_data_all, f