-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathconfig.json
74 lines (74 loc) · 2.62 KB
/
config.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
{
"models": [
{
"enabled": true,
"model_name": "Cases",
"model": {
"type": "neural_net",
"alpha": 1e-6,
"hidden_layer_sizes": "auto",
"learning_rate_init": 0.0008,
"max_iter": 50000,
"batch_size": 32,
"tol": 1e-6,
"n_iter_no_change": 250,
"verbose": false
},
"datagrabber_class": "CasesDataGrabber",
"grab_data_from_server": true,
"offline_dataset_date": "2020-09-26",
"days_to_predict": 10
},
{
"enabled": true,
"model_name": "Deaths",
"model": {
"type": "neural_net",
"alpha": 1e-6,
"hidden_layer_sizes": "auto",
"learning_rate_init": 0.0002,
"max_iter": 50000,
"batch_size": 32,
"tol": 1e-6,
"n_iter_no_change": 250,
"verbose": false
},
"datagrabber_class": "DeathsDataGrabber",
"grab_data_from_server": true,
"offline_dataset_date": "2020-09-26",
"days_to_predict": 10
},
{
"_comment": "This is an example of how to use a neural network model with custom hidden layer sizes (instead of 'auto').",
"enabled": false,
"model_name": "Deaths using Neural Network with custom hidden layer sizes",
"model": {
"_comment": "You may use any valid sklearn's MLPRegressor arguments here.",
"type": "neural_net",
"alpha": 1e-5,
"hidden_layer_sizes": [48, 48],
"learning_rate_init": 0.008,
"max_iter": 50000,
"batch_size": 32,
"verbose": false
},
"datagrabber_class": "DeathsDataGrabber",
"grab_data_from_server": true,
"offline_dataset_date": "2020-09-25",
"days_to_predict": 10
},
{
"_comment": "This is an example of how to use a polynomial regression model which can be useful in most cases.",
"enabled": false,
"model_name": "Cases using Polynomial Regression",
"model": {
"type": "regression",
"polynomial_degree": 2
},
"datagrabber_class": "CasesDataGrabber",
"grab_data_from_server": true,
"offline_dataset_date": "2020-05-15",
"days_to_predict": 10
}
]
}