-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathlec5.Rmd
295 lines (225 loc) · 9.26 KB
/
lec5.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Spatial correlation and prediction
\(
\newcommand{\E}{{\rm E}} % E expectation operator
\newcommand{\Var}{{\rm Var}} % Var variance operator
\newcommand{\Cov}{{\rm Cov}} % Cov covariance operator
\newcommand{\Cor}{{\rm Corr}}
\)
### What is spatial correlation?
Idea from time series: look at lagged correlations, and the $h$-scatterplot.
What is it? Plots of (or correlation between) $Z(s)$ and $Z(s+h)$, where
$s+h$ is $s$, shifted by $h$ (time distance, spatial distance).
### Random variables: expectation, variance, covariance
Random variable: $Z$ follows a probability distribution, specified by
a density function
$f(z)= \Pr(Z=z)$ or a distribution function $F(z)=\Pr(Z \le z)$
Expectation: $\E(Z) = \int_{-\infty}^{\infty} f(s)ds$ -- center of mass, mean.
Variance: $\Var(Z)=\E(Z-\E(Z))^2$ -- mean squared distance from mean;
measure of spread; square root: standard deviation of $Z$.
Covariance: $\Cov(X,Y)=\E((X-\E(X))(Y-\E(Y)))$ -- mean product;
can be negative; $\Cov(X,X)=\Var(X)$.
Correlation: $r_{XY}=\frac{\Cov(X,Y)}{\sqrt{\Var(X)\Var(Y)}}$ -- normalized
$[-1,1]$ covariance. -1 or +1: perfect correlation.
### Normal distribution
* _univariate_: If $Z$ follows
a normal distribution, its probability
distribution is _completely_ characterized
by its mean $E(Z)=\mu$ and variance $\Var(Z)=\sigma^2$
* _multivariate_:
If the vector $Z=(Z_1,Z_2,...,Z_p)$ follows
a _multivariate_ normal distribution, its marginal
distributions are univariate normal, and
its _joint_ probability
distribution is _completely_ characterized
by the mean vector $E(Z)=\mu=(\mu_1,...\mu_p)$ and covariance
matrix $V$, of which element $(i,j)$ equals $\Cov(Z_i,Z_j)$
* covariance matrices have variances on the diagonal
```{r}
library(mvtnorm)
r = 0.0
Sigma = cbind(c(1, r), c(r, 1))
out = rmvnorm(500, c(5,5), Sigma)
x = out[,1]
y = out[,2]
plot(x, y)
model = lm(y~x)
summary(model)
lines(abline(model))
mse = round(mean((x-y)^2), digits=3)
title(paste("correlation:", round(cor(x,y),digits=3), "MSE", mse))
r = .5
Sigma = cbind(c(1, r), c(r, 1))
out = rmvnorm(500, c(5,5), Sigma)
x = out[,1]
y = out[,2]
plot(x, y)
model = lm(y~x)
summary(model)
lines(abline(model))
mse = round(mean((x-y)^2), digits=3)
title(paste("correlation:", round(cor(x,y),digits=3), "MSE", mse))
r = .9
Sigma = cbind(c(1, r), c(r, 1))
out = rmvnorm(500, c(5,5), Sigma)
x = out[,1]
y = out[,2]
plot(x, y)
model = lm(y~x)
summary(model)
lines(abline(model))
mse = round(mean((x-y)^2), digits=3)
title(paste("correlation:", round(cor(x,y),digits=3), "MSE", mse))
r = .95
Sigma = cbind(c(1, r), c(r, 1))
out = rmvnorm(500, c(5,5), Sigma)
x = out[,1]
y = out[,2]
y = x + 0.1 * rnorm(500)
plot(x, y)
model = lm(y~x)
summary(model)
lines(abline(model))
mse = round(mean((x-y)^2), digits=3)
title(paste("correlation:", round(cor(x,y),digits=3), "MSE", mse))
```
### How can correlation help prediction?
Problem:
![](interp.png)
### Questions
Given observation $z(s_1)$, how to predict $z(s_0)$?
* What is the best predicted value at $s_0$, $\hat{z}(s_0)$?
* How can we compute a measure of error for $\hat{z}(s_0)-z(s_0)$?
* Can we compute e.g.~95\% prediction intervals for the
unknown $z(s_0)$?
Obviously, given _only_ $z(s_1)$, the best predictor for
$z(s_0)$ is $\hat{z}(s_0)=z(s_1)$.
But what is the error variance, i.e. $\mbox{Var}(\hat{z}(s_0)-z(s_0))$?
### Estimation error
Let both $z(s_1)$ and $z(s_0)$ come from a field that has variance 1,
i.e. $\mbox{Var}(z(s_0)) = \mbox{Var}(z(s_1))=1$, and that has a constant mean:
$\mbox{E}(z(s_0)) = \mbox{E}(z(s_1))=m$
Then,
$$\mbox{Var}(\hat{z}(s_0)-z(s_0)) = \mbox{Var}(z(s_1)-z(s_0))$$
As both have the same mean, this can be written as
$$\mbox{E}(\hat{z}(s_0)-z(s_0))^2 = \mbox{Var}(z(s_1)) + \mbox{Var}(z(s_0)) - 2\mbox{Cov}(z(s_1),z(s_0))$$
As both have variance 1, this equals $2(1-r)$ with $r$ the correlation
between $z(s_0)$ and $z(s_1)$. Examples follow.
### Suppose we know the mean
If we know the mean $\mu$, it may be a good idea to use a compromise
between the observation and the mean, e.g.
$$\hat{z}(s_0) = (1-r) \mu + r z(s_1)$$
### Next problems...
![](interp2.png)
![](interp3.png)
### What is Geostatistical Interpolation?
Geostatistical interpolation (kriging) uses linear predictors
$$\hat{z}(s_0) = \sum_{i=1}^n \lambda_i z(s_i)$$
with weights chosen such that
* the interpolated values is unbiased: $\mbox{E}(\hat{z}(s_0)-z(s_0))=0$ and
* has mininum variance:
$\mbox{Var}(\hat{z}(s_0)-z(s_0))$ is at minimum.
All that is needed is variances and correlations.
### Random variables
Random variables (RVs) are numeric variables whose outcomes are subject
to chance.
The cumulative distribution of probability $F_x(\cdot)$ over outcomes $z$
over all possible values of the RV $Z$ is the probability distribution function:
$$P(Z \le z) = F_Z(z) = \int_{-\infty}^z f_Z(u)du$$
where $f_Z(\cdot)$ is the probability _density_ function of $Z$. The
sum of all probability is 1.
Random variables have an expectation (mean): $E(Z) =
\int_{-\infty}^{\infty} u f_Z(u) du$ and a variance: $\Var(Z) =
E[(Z-E(Z))^2]$.
Try to think of $E(Z)$ as $\frac{1}{n}\sum_{i=1}^{n} z_i$, with $i \rightarrow \infty$.
Two random variables $X$ and $Y$ have covariance defined as
$\Cov(X,Y) = E[(X-E(X))(Y-E(Y))]$
### Correlation and covariance
Correlation is scaled covariance, scaled by the variances. For two
variables $X$ and $Y$, it is
$$\Cor(X,Y) = \frac{\Cov(X,Y)}{\sqrt{\Var(X)\Var(Y)}}$$
It is quite easy to show that $|\Cov(X,Y)| \le \sqrt{\Var(X)\Var(Y)}$, so correlation
ranges from -1 to 1. For this, note that $\Cov(X,X)=\Var(X)$.
and $\Cov(X,-X)=-\Var(X)$.
It is perhaps easier to think of covariance as unscaled correlation.
Note: _A large covariance does not imply a strong correlation_
### The quadratic form
We will not consider single random variables, but rather
large collections of them. In fact, we will consider each observation
$z(s_i)$ as a realisation (outcome) of a random variable $Z(s_i)$,
and consider the $Z$ variable at all other locations also as separate
random variables, say $Z(s_0)$ for any $s_0$ in the domain of interest.
Let $Z = [Z(s_1)\ Z(s_2)\ ...\ Z(s_n)]'$ then $\Var(Z)=V$ is the covariance
matrix of vector $Z$, with $i,j$-th element $\Cov(Z(s_i),Z(s_j))$,
implying it has variances on the diagonal.
Then, it is easy to show that for non-random weights $\lambda = [\lambda_1 ... \lambda_n]'$
the quadratic form $\lambda'Z = \sum_{i=1}^n \lambda_i Z(s_i)$ has variance
$$ \Var(\lambda'Z) = \lambda' \Var(Z) \lambda =
\sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j \Cov(Z(s_i),Z(s_j)) = \lambda'V\lambda$$
### Why do we need this?
When we predict (interpolate), we're forming linear combinations,
$\sum_{i=1}^n \lambda_i Z(s_i)$, and want to know the variance of $\sum_{i=1}^n
\lambda_i Z(s_i) - Z(s_0)$, the interpolation error variance. Only then can we
find weights such that it is minimum.
What is the scalar $\Var(\sum_{i=1}^n \lambda_i Z(s_i)-Z(s_0))$? Write as
$$\Var(\lambda'Z - Z(s_0)) = \Var(\lambda'Z) + \Var(Z(s_0)) - 2\Cov(\lambda'Z,Z(s_0))$$
$$=\lambda'V\lambda + \sigma_0^2 + \sum_{i=1}^n \lambda_i \Cov(Z(s_i),Z(s_0)) $$
with $\sigma_0^2 = \Var(Z(s_0))$
So, we need variances of all $Z(s_i)$, including for all $s_0$,
and all covariances between pairs $Z(s_i)$ and $Z(s_j)$, including all $s_0$.
### Suppose we know all that
Kriging: find weights $\lambda$ such that
$\Var(Z(s_0)-\hat{Z}(s_0))=
\Var(Z(s_0)-\sum_{i=1}^n\lambda_i Z(s_i))$
is minimized, and we have the best (minimum variance) linear predictor.
Best linear prediction weights:
Let $V=\Var(Z)\ \ (n\times n)$ and $v=\Cov(Z(s_0),Z)\ \ (n\times 1)$, and
scalar $\Var(Z(s_0)) = \sigma^2_0$.
Expected squared prediction error $\E(Z(s_0)-\hat{Z}(s_0))^2 = \sigma^2(s_0)$
Replace $Z$ with $Z-\mu$ (or assume $\mu=0$)
$$\sigma^2(s_0) = \E(Z(s_0)-\lambda ' Z)^2 =
\E(Z(s_0))^2 - 2 \lambda '\E(Z(s_0) Z)+\lambda'\E(Z Z')\lambda $$
$$ = \Var(Z(s_0)) - 2 \lambda'\Cov(Z(s_0),Z) + \lambda'\Var(Z)\lambda
= \sigma^2_0 - 2 \lambda'v + \lambda'V\lambda $$
Choose $\lambda$ such that
$\frac{\delta \sigma^2(s_0)}{\delta\lambda} = -2 v' + 2\lambda'V = 0$
$\lambda' = v' V^{-1}$
BLP/Simple kriging:
1. $\hat{Z}(s_0) = \mu + v'V^{-1} (Z-\mu)$
2. $\sigma^2(s_0) = \sigma^2_0 - v'V^{-1}v$
```{r}
library(sp)
cov = function(h) exp(-h)
sk = function(data, newdata, mu, cov) {
library(sp) # spDists
V = cov(spDists(data))
v = cov(spDists(data, newdata))
mu + t(v) %*% solve(V, data[[1]] - mu)
}
# prediction location at (0,1):
newdata = SpatialPoints(cbind(0,1))
# observation location at (1,1), with attribute value (y) 3:
pts = SpatialPoints(cbind(1,1))
data = SpatialPointsDataFrame(pts, data.frame(z = 3))
sk(data, newdata, 0, cov) # mu = 0
newdata = SpatialPoints(cbind(.1 * 0:20, 1))
sk(data, newdata, 0, cov) # mu = 0
```
Plotting them:
```{r}
newdata = SpatialPoints(cbind(seq(-4,6,by=.1), 1))
Z = sk(data, newdata, 0, cov) # mu = 0
plot(coordinates(newdata)[,1], Z, type='l', ylim = c(0,3))
points(as(data, "data.frame")[,c(2,1)], col='red', pch=16)
abline(0,0, col='blue', lty=2)
```
Example with zinc data:
```{r}
data(meuse, package = "sp")
coordinates(meuse) = ~x+y
data(meuse.grid, package = "sp")
coordinates(meuse.grid) = ~x+y
gridded(meuse.grid) = TRUE
meuse[[1]] = log(meuse$zinc)
meuse.grid$sk = sk(meuse, meuse.grid, mean(log(meuse$zinc)), function(h) exp(-h/300))
spplot(meuse.grid["sk"], main = "simple kriging", scales = list(draw = TRUE))
```