Skip to content

Latest commit

 

History

History
1336 lines (991 loc) · 42.3 KB

COMMUNICATION.adoc

File metadata and controls

1336 lines (991 loc) · 42.3 KB

Introduction to the Communication API

With the strategy to divide and conquer on Eclipse JNoSQL, the communication API was born. It has the goal to make the communication layer easy and extensible. The extensibility is more than important, that is entirely necessary once the API must support specific feature in each database. Nonetheless, the advantage of a common API in a change to another database provider has lesser than using the specific API.

To cover the three of the four database types, this API includes three packages, one for each database.

  • org.eclipse.jnosql.communication.column

  • org.eclipse.jnosql.communication.document

  • org.eclipse.jnosql.communication.keyvalue

Note
A package for the Graph database type is not included in this API because we leverage the Graph communication API provided by Apache TinkerPop.

So, if a database is multi-model, i.e., has support for more than one database type, it will implement an API for each database it supports. Also, each API has the TCK to prove if the database is compatible with the API. Even from different NoSQL types, it tries to use the same nomenclature:

  • Configuration: It is a function that reads from `Settings and then creates a manager factory instance.

  • Manager’s Factory: The manager factory instance creates a manager instance from the database name.

  • Manager: The manager instance bridges the Eclipse JNoSQL and the NoSQL vendor.

  • Entity: The communication entity

  • Value: the information unit

Structure Key-value Column Document

Configuration

KeyValueConfiguration

ColumnConfiguration

DocumentConfiguration

Factory

BucketManagerFactory

ColumnManagerFactory

DocumentManagerFactory

Manager’s Factory

BucketManager

ColumnManager

DocumentManager

Entity

KeyValueEntity

ColumnEntity

DocumentEntity

The codes below show several CRUD operations using the communication layer.

Document Communication sample

Settings settings = Settings.builder().put("credential", "value").build();
DocumentConfiguration configuration = new NoSQLDocumentProvider();
DocumentManagerFactory factory = configuration.apply(settings);
try (DocumentManager manager = factory.apply("database")) {
    DocumentEntity entity = DocumentEntity.of("entity");
    entity.add("id", 10L);
    entity.add("version", 0.001);
    entity.add("name", "Diana");
    manager.insert(entity);
    DocumentQuery query = select().from("entity").where("version").gte(0.001).build();

    Stream<DocumentEntity> entities = manager.select(query);
    DocumentDeleteQuery delete = delete().from("entity").where("id").eq(10L).build();

  manager.delete(delete);
}

Column Communication sample

Settings settings = Settings.builder().put("credential", "value").build();
ColumnConfiguration configuration = new NoSQLColumnProvider();
ColumnManagerFactory factory = configuration.apply(settings);
try (ColumnManager manager = factory.apply("database")) {
    ColumnEntity entity = ColumnEntity.of("entity");
    entity.add("id", 10L);
    entity.add("version", 0.001);
    entity.add("name", "Diana");

    manager.insert(entity);
    ColumnQuery query = select().from("entity").where("version").gte(0.001).build();
    Stream<ColumnEntity> entities = manager.select(query);

    ColumnDeleteQuery delete = delete().from("entity").where("id").eq(10L).build();

    manager.delete(delete);
}

Key-value Communication sample

Settings settings = Settings.builder().put("credential", "value").build();
KeyValueConfiguration configuration = new NoSQLKeyValueProvider();
BucketManagerFactory factory = configuration.apply(settings);
try (BucketManager manager = factory.apply("database")) {
     KeyValueEntity entity = KeyValueEntity.of(12, "Poliana");

     manager.put(entity);
     manager.delete(12);
}

The API Structure

The communication has four projects:

  • The communication-core: The Eclipse JNoSQL API communication common to all database types.

  • The communication-key-value: The Eclipse JNoSQL communication API layer to a key-value database.

  • The communication-column: The Eclipse JNoSQL communication API layer to a column database.

  • The communication-document: The Eclipse JNoSQL communication API layer to a document database.

Each module works separately such that a NoSQL vendor just needs to implement the specific type. For example, a key-value provider will apply a key-value API. If a NoSQL driver already has a driver, this API can work as an adapter with the current one. For a multi-model NoSQL database, providers will implement the APIs they need.

Warning
To the Graph communication API, there is the Apache TinkerPop that won’t be covered in this documentation.

Value

This interface represents the value that will store, that is, a wrapper to serve as a bridge between the database and the application. For example, if a database does not support a Java type, it may do the conversion with ease.

Value value = Value.of(12);

String string = value.get(String.class);

List<Integer> list = value.get(new TypeReference<List<Integer>>() {});

Set<Long> set = value.get(new TypeReference<Set<Long>>() {});

Stream<Integer> stream = value.get(new TypeReference<Stream<Integer>>() {});

Object integer = value.get();

Create Custom Writer and Reader

As mentioned before, the Value interface is used to store the cost information into a database. The API already has support to the Java type such as primitive types, wrappers types, new Java 8 date/time. Furthermore, the developer can create a custom converter quickly and easily. It has two interfaces:

  • ValueWriter: This interface represents an instance of Value to write in a database.

  • ValueReader: This interface represents how the Value will convert to Java application. This interface will use the <T> T get(Class<T> type) and <T> T get(TypeSupplier<T> typeSupplier).

Both class implementations load from the Java SE ServiceLoader resource. So for the Communication API to learn a new type, just register on ServiceLoader. Consider the following Money class:

import java.math.BigDecimal;
import java.util.Currency;
import java.util.Objects;

public class Money {

    private final Currency currency;

    private final BigDecimal value;

    private Money(Currency currency, BigDecimal value) {
        this.currency = currency;
        this.value = value;
    }

    public Currency getCurrency() {
        return currency;
    }

    public BigDecimal getValue() {
        return value;
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) {
            return true;
        }
        if (o == null || getClass() != o.getClass()) {
            return false;
        }
        Money money = (Money) o;
        return Objects.equals(currency, money.currency) &&
                Objects.equals(value, money.value);
    }

    @Override
    public int hashCode() {
        return Objects.hash(currency, value);
    }

    @Override
    public String toString() {
        return currency.getCurrencyCode() + ' ' + value;
    }

    public static Money of(Currency currency, BigDecimal value) {
        return new Money(currency, value);
    }

    public static Money parse(String text) {
        String[] texts = text.split(" ");
        return new Money(Currency.getInstance(texts[0]),
                BigDecimal.valueOf(Double.valueOf(texts[1])));
    }
}
Note
Just to be more didactic, the book creates a simple money representation. As everyone knows, reinventing the wheel is not a good practice. In a production environment, the Java developer should use mature Money APIs such as Moneta, the reference implementation of JSR 354.

The first step is to create the converter to a custom type database, the ValueWriter.

import org.eclipse.jnosql.communication.ValueWriter;

public class MoneyValueWriter implements ValueWriter<Money, String> {

    @Override
    public boolean isCompatible(Class type) {
        return Money.class.equals(type);
    }

    @Override
    public String write(Money money) {
        return money.toString();
    }
}

With the MoneyValueWriter created and the Money type will save as String, then the next step is read information to Java application. As can be seen, a ValueReader implementation.

import org.eclipse.jnosql.communication.ValueReader;

public class MoneyValueReader implements ValueReader {

    @Override
    public boolean isCompatible(Class type) {
        return Money.class.equals(type);
    }

    @Override
    public <T> T read(Class<T> type, Object value) {
        return (T) Money.parse(value.toString());
    }
}

After both implementations have been completed, the last step is to register them into two files:

  • META-INF/services/org.eclipse.jnosql.communication.ValueReader

  • META-INF/services/org.eclipse.jnosql.communication.ValueWriter

Each file will have the qualifier of its respective implementation:

The file org.eclipse.jnosql.communication.ValueReader will contain:

my.company.MoneyValueReader

The file org.eclipse.jnosql.communication.ValueWriter will contain:

my.company.MoneyValueWriter
Value value = Value.of("BRL 10.0");

Money money = value.get(Money.class);

List<Money> moneys = value.get(new TypeReference<List<Money>>() {});

Set<Money> moneys = value.get(new TypeReference<Set<Money>>() {});;

Element Entity

The Element Entity is a small piece of a body, except for the key-value structure type, once this structure is simple. For example, in the column family structure, the entity has columns, the element entity with column has a tuple where the key is the name, and the value is the information as an implementation of Value.

  • Document

  • Column

Document

The Document is a small piece of a Document entity. Each document has a tuple where the key is the document name, and the value is the information itself as Value.

Document document = Document.of("name", "value");

Value value = document.value();

String name = document.name();

The document might have a nested document, that is, a sub-document.

Document subDocument = Document.of("subDocument", document);

The way to store information in sub-documents will also depend on the implementation of each database driver.

To access the information from Document, it has an alias method to Value. In other words, it does a conversion directly from Document interface.

Document age = Document.of("age", 29);

String ageString = age.get(String.class);

List<Integer> ages = age.get(new TypeReference<List<Integer>>() {});

Object ageObject = age.get();

Column

The Column is a small piece of the Column Family entity. Each column has a tuple where the name represents a key and the value itself as a Value implementation.

Column document = Column.of("name", "value");

Value value = document.value();

String name = document.name();

With this interface, we may have a column inside a column.

Column subColumn = Column.of("subColumn", column);

The way to store a sub-column will also depend on each driver’s implementation as well as the information.

To access the information from Column, it has an alias method to Value. Thus, you can convert directly from a Column interface.

Column age = Column.of("age", 29);

String ageString = age.get(String.class);

List<Integer> ages = age.get(new TypeReference<List<Integer>>() {});

Object ageObject = age.get();

Entity

The Entity is the body of the information that goes to the database. Each database has an Entity:

  • ColumnEntity

  • DocumentEntity

  • KeyValueEntity

ColumnEntity

The ColumnEntity is an entity to the Column Family database type. It is composed of one or more columns. As a result, the Column is a tuple of name and value.

ColumnEntity entity = ColumnEntity.of("entity");

entity.add("id", 10L);

entity.add("version", 0.001);

entity.add("name", "Diana");

entity.add("options", Arrays.asList(1, 2, 3));

List<Column> columns = entity.getColumns();

Optional<Column> id = entity.find("id");

DocumentEntity

The DocumentEntity is an entity to Document collection database type. It is composed of one or more documents. As a result, the Document is a tuple of name and value.

DocumentEntity entity = DocumentEntity.of("documentFamily");

String name = entity.name();

entity.add("id", 10L);

entity.add("version", 0.001);

entity.add("name", "Diana");

entity.add("options", Arrays.asList(1, 2, 3));

List<Document> documents = entity.documents();
Optional<Document> id = entity.find("id");
entity.remove("options");

KeyValueEntity

The KeyValueEntity is the simplest structure. It has a tuple and a key-value structure. As the previous entity, it has direct access to information using alias method to Value.

KeyValueEntity<String> entity = KeyValueEntity.of("key", Value.of(123));

KeyValueEntity<Integer> entity2 = KeyValueEntity.of(12, "Text");

String key = entity.key();

Value value = entity.vaalue();

Integer integer = entity.get(Integer.class);

Manager

The Manager is the class that pushes information to a database and retrieves it.

  • DocumentManager

  • ColumnConfiguration

  • BucketManager

Document Manager

The DocumentManager is the class that manages the persistence on the synchronous way to document collection.

DocumentEntity entity = DocumentEntity.of("collection");

Document diana = Document.of("name", "Diana");

entity.add(diana);

List<DocumentEntity> entities = Collections.singletonList(entity);

DocumentManager manager = // instance;

// Insert operations
manager.insert(entity);

manager.insert(entity, Duration.ofHours(2L)); // inserts with two hours of TTL

manager.insert(entities, Duration.ofHours(2L)); // inserts with two hours of TTL

// Update operations
manager.update(entity);

manager.update(entities);
Search information

The Document Communication API supports retrieving information from a DocumentQuery instance.

By default, there are two ways to create a DocumentQuery instance that are available as a static method in the same class:

  1. The select methods follow the fluent-API principle; thus, it is a safe way to create a query using a DSL code. Therefore, each action will only show the reliability option as a menu.

  2. The builder methods follow the builder pattern; it is not more intelligent and safer than the previous one. However, it allows for running more complex queries and combinations.

Both methods should guarantee the validity and consistency`DocumentQuery` instance.

In the next step, there are a couple of query creation samples using both select and builder methods.

  • Select all fields from the document collection Person.

Using the select method:

DocumentQuery query = DocumentQuery.select().from("Person").build();
//static imports
DocumentQuery query = select().from("Person").build();

Using the builder method:

DocumentQuery query = DocumentQuery.builder().from("Person").build();
//static imports
DocumentQuery query = builder().from("Person").build();
  • Select all fields where the "name" equals "Ada Lovelace" from the document collection Person.

Using the select method:

 DocumentQuery query = DocumentQuery.select()
                .from("Person").where("name").eq("Ada Lovelace")
                .build();
//static imports
 DocumentQuery query = select()
                .from("Person").where("name").eq("Ada Lovelace")
                .build();

Using the builder method:

DocumentQuery query = DocumentQuery.builder()
                .from("Person").where(DocumentCondition.eq("name", "Ada Lovelace"))
                .build();
//static imports
DocumentQuery query = builder().from("Person")
                               .where(eq("name", "Ada Lovelace"))
                               .build();
  • Select the field name where the "name" equals "Ada Lovelace" from the document collection Person.

Using the select method:

DocumentQuery query = DocumentQuery.select("name")
                .from("Person").where("name").eq("Ada Lovelace")
                .build();
//static imports
DocumentQuery query = select("name")
              .from("Person")
              .where("name").eq("Ada Lovelace")
              .build();

Using the builder method:

DocumentQuery query = DocumentQuery.builder("name")
              .from("Person").where(DocumentCondition.eq("name", "Ada Lovelace"))
              .build();
//static imports

DocumentQuery query = builder("name")
              .from("Person").where(eq("name", "Ada Lovelace"))
              .build();
  • Select the fields name and age where the "name" is "Ada Lovelace" and the "age" is greater than twenty from the document collection Person.

Using the select method:

DocumentQuery query = DocumentQuery.select("name", "age")
              .from("Person")
              .where("name").eq("Ada Lovelace")
              .and("age").gt(20)
              .build();
//static imports
DocumentQuery query = select("name", "age")
              .from("Person")
              .where("name").eq("Ada Lovelace")
              .and("age").gt(20)
              .build();

Using the builder method:

DocumentQuery query = DocumentQuery.builder("name", "age")
             .from("Person")
             .where(DocumentCondition.and(DocumentCondition.eq("name", "Ada Lovelace"),
             DocumentCondition.gt("age", 20)))
             .build();

//static imports

DocumentQuery query = builder("name", "age")
             .from("Person")
             .where(and(eq("name", "Ada Lovelace"),
             gt("age", 20)))
             .build();
  • Select the fields name and age where the "name" is "Ada Lovelace" or the "age" is greater than twenty from the document collection Person.

Using the select method:

DocumentQuery query = DocumentQuery.select("name", "age")
              .from("Person")
              .where("name").eq("Ada Lovelace")
              .or("age").gt(20)
              .build();
//static imports
DocumentQuery query = select("name", "age")
              .from("Person")
              .where("name").eq("Ada Lovelace")
              .or("age").gt(20)
              .build();

Using the builder method:

DocumentQuery query = DocumentQuery.builder("name", "age")
             .from("Person")
             .where(DocumentCondition.or(DocumentCondition.eq("name", "Ada Lovelace"),
             DocumentCondition.gt("age", 20)))
             .build();

//static imports

DocumentQuery query = builder("name", "age")
             .from("Person")
             .where(or(eq("name", "Ada Lovelace"),
             gt("age", 20)))
             .build();
  • Select the fields name and age where the "name" is "Ada Lovelace" or the "age" is greater than twenty; skip the first element, and the max return is two from the document collection Person.

Using the select method:

DocumentQuery query = DocumentQuery.select("name", "age")
              .from("Person")
              .where("name").eq("Ada Lovelace")
              .or("age").gt(20)
              .skip(1)
              .limit(2)
              .build();
//static imports
DocumentQuery query = select("name", "age")
              .from("Person")
              .where("name").eq("Ada Lovelace")
              .or("age").gt(20)
              .skip(1)
              .limit(2)
              .build();

Using the builder method:

DocumentQuery query = DocumentQuery.builder("name", "age")
              .from("Person")
              .where(DocumentCondition.or(DocumentCondition.eq("name", "Ada Lovelace"),
                        DocumentCondition.gt("age", 20)))
              .skip(1).limit(2)
              .build();

//static imports

DocumentQuery query = builder("name", "age")
                .from("Person")
                .where(or(eq("name", "Ada Lovelace"),
                        gt("age", 20)))
                .skip(1).limit(2)
                .build();
  • Select the fields name and age where the "name" is "Ada Lovelace" or the "age" is greater than twenty; skip the first element, and the max return is two sorts ascending by name and descending by age from the document collection Person.

Using the select method:

DocumentQuery query = DocumentQuery.select("name", "age")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .or("age").gt(20)
            .orderBy("name").asc()
            .orderBy("desc").desc()
            .build();

//static imports

DocumentQuery query = select("name", "age")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .or("age").gt(20)
            .orderBy("name").asc()
            .orderBy("desc").desc()
            .build();

Using the builder method:

 DocumentQuery query = DocumentQuery.builder("name", "age")
         .from("Person")
         .where(DocumentCondition.or(DocumentCondition.eq("name", "Ada Lovelace"),
                DocumentCondition.gt("age", 20)))
         .sort(Sort.asc("name"), Sort.desc("age"))
         .build();

//static imports

DocumentQuery query = builder("name", "age")
         .from("Person")
         .where(or(eq("name", "Ada Lovelace"),
                gt("age", 20)))
         .sort(asc("name"), desc("age"))
         .build();
Removing information

Similar to DocumentQuery, there is a class to remove information from the document database type: A DocumentDeleteQuery type.

It is more efficient than DocumentQuery because there is no pagination and sort feature as this information is unnecessary to remove information from database.

It follows the same principle of the query where it has the build and select methods.

DocumentManager manager = // instance;
DocumentDeleteQuery query = DocumentQueryBuilder.delete().from("collection")
                                                .where("age").gt(10).build();
manager.delete(query);
//using builder
DocumentDeleteQuery query = DocumentQueryBuilder.builder().from("collection")
                                                .where(DocumentCondition.gt("age", 10).build();

The DocumentCondition has support for both DocumentQuery and DocumentDeleteQuery on fluent and builder patterns.

The main difference is that you’ll combine all the options manually on the builder instead of being transparent as the fluent way does.

Thus, it is worth checking the DocumentCondition to see all the filter options.

Column Manager

The ColumnManager is the class that manages the persistence on the synchronous way to a Column Family database.

ColumnEntity entity = ColumnEntity.of("entity");

Column diana = Column.of("name", "Diana");

entity.add(diana);
List<ColumnEntity> entities = Collections.singletonList(entity);
ColumnManager manager = // instance;

// Insert operations
manager.insert(entity);

manager.insert(entity, Duration.ofHours(2L)); // inserts with two hours of TTL

manager.insert(entities, Duration.ofHours(2L)); // inserts with two hours of TTL

// Update operations
manager.update(entity);

manager.update(entities);

The Column Communication API supports retrieving information from a ColumnQuery instance.

By default, there are two ways to create a ColumnQuery instance that are available as a static method in the same class:

  1. The select methods follow the fluent-API principle; thus, it is a safe way to create a query using a DSL code. Therefore, each action will only show the reliability option as a menu.

  2. The builder methods follow the builder pattern; it is not more intelligent and safer than the previous one. However, it allows for running more complex queries and combinations.

Both methods should guarantee the validity and consistency`ColumnQuery` instance.

In the next step, there are a couple of query creation samples using both select and builder methods.

  • Select all fields from the column family Person.

Using the select method:

ColumnQuery query = ColumnQuery.select().from("Person").build();
//static imports
ColumnQuery query = select().from("Person").build();

Using the builder method:

ColumnQuery query = ColumnQuery.builder().from("Person").build();
//static imports
ColumnQuery query = builder().from("Person").build();
  • Select all fields where the "name" equals "Ada Lovelace" from the column family Person.

Using the select method:

ColumnQuery query = ColumnQuery.select()
            .from("Person").where("name").eq("Ada Lovelace")
            .build();
//static imports
ColumnQuery query = select()
            .from("Person").where("name").eq("Ada Lovelace")
            .build();

Using the builder method:

ColumnQuery query = ColumnQuery.builder()
            .from("Person").where(ColumnCondition.eq("name", "Ada Lovelace"))
            .build();
//static imports
ColumnQuery query = builder().from("Person")
            .where(eq("name", "Ada Lovelace"))
            .build();
  • Select the field name where the "name" equals "Ada Lovelace" from the column family Person.

Using the select method:

ColumnQuery query = ColumnQuery.select("name")
            .from("Person").where("name").eq("Ada Lovelace")
            .build();
//static imports
ColumnQuery query = select("name")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .build();

Using the builder method:

ColumnQuery query = ColumnQuery.builder("name")
            .from("Person").where(ColumnCondition.eq("name", "Ada Lovelace"))
            .build();
//static imports

ColumnQuery query = builder("name")
            .from("Person").where(eq("name", "Ada Lovelace"))
            .build();
  • Select the fields name and age where the "name" is "Ada Lovelace" and the "age" is greater than twenty from the column family Person.

Using the select method:

ColumnQuery query = ColumnQuery.select("name", "age")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .and("age").gt(20)
            .build();
//static imports
ColumnQuery query = select("name", "age")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .and("age").gt(20)
            .build();

Using the builder method:

ColumnQuery query = ColumnQuery.builder("name", "age")
            .from("Person")
            .where(ColumnCondition.and(ColumnCondition.eq("name", "Ada Lovelace"),
             DocumentCondition.gt("age", 20)))
             .build();

//static imports

ColumnQuery query = builder("name", "age")
            .from("Person")
            .where(and(eq("name", "Ada Lovelace"),
             gt("age", 20)))
            .build();
  • Select the fields name and age where the "name" is "Ada Lovelace" or the "age" is greater than twenty from the column family Person.

Using the select method:

ColumnQuery query = ColumnQuery.select("name", "age")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .or("age").gt(20)
            .build();
//static imports
ColumnQuery query = select("name", "age")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .or("age").gt(20)
            .build();

Using the builder method:

ColumnQuery query = ColumnQuery.builder("name", "age")
            .from("Person")
            .where(ColumnCondition.or(ColumnCondition.eq("name", "Ada Lovelace"),
             ColumnCondition.gt("age", 20)))
            .build();

//static imports

ColumnQuery query = builder("name", "age")
            .from("Person")
            .where(or(eq("name", "Ada Lovelace"),
             gt("age", 20)))
            .build();
  • Select the fields name and age where the "name" is "Ada Lovelace" or the "age" is greater than twenty; skip the first element, and the max return is two from the column family Person.

Using the select method:

ColumnQuery query = ColumnQuery.select("name", "age")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .or("age").gt(20)
            .skip(1)
            .limit(2)
            .build();
//static imports
ColumnQuery query = select("name", "age")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .or("age").gt(20)
            .skip(1)
            .limit(2)
            .build();

Using the builder method:

ColumnQuery query = ColumnQuery.builder("name", "age")
            .from("Person")
            .where(ColumnCondition.or(ColumnCondition.eq("name", "Ada Lovelace"),
                        ColumnCondition.gt("age", 20)))
            .skip(1).limit(2)
            .build();

//static imports

ColumnQuery query = builder("name", "age")
                .from("Person")
                .where(or(eq("name", "Ada Lovelace"),
                        gt("age", 20)))
                .skip(1).limit(2)
                .build();
  • Select the fields name and age where the "name" is "Ada Lovelace" or the "age" is greater than twenty; skip the first element, and the max return is two sorts ascending by name and descending by age from the column family Person.

Using the select method:

ColumnQuery query = ColumnQuery.select("name", "age")
            .from("Person")
            .where("name").eq("Ada Lovelace")
            .or("age").gt(20)
            .orderBy("name").asc()
            .orderBy("desc").desc()
            .build();

Using the builder method:

 ColumnQuery query = ColumnQuery.builder("name", "age")
         .from("Person")
         .where(DocumentCondition.or(DocumentCondition.eq("name", "Ada Lovelace"),
                DocumentCondition.gt("age", 20)))
         .sort(Sort.asc("name"), Sort.desc("age"))
         .build();

//static imports

ColumnQuery query = builder("name", "age")
         .from("Person")
         .where(or(eq("name", "Ada Lovelace"),
                gt("age", 20)))
         .sort(asc("name"), desc("age"))
         .build();
Removing information

Similar to ColumnQuery, there is a class to remove information from the document database type: A ColumnDeleteQuery type.

It is more efficient than ColumnQuery because there is no pagination and sort feature as this information is unnecessary to remove information from database.

It follows the same principle of the query where it has the build and select methods.

ColumnManager manager = // instance;
ColumnDeleteQuery query = ColumnDeleteQuery.delete().from("collection")
                                                .where("age").gt(10).build();
manager.delete(query);
//using builder
ColumnDeleteQuery query = ColumnDeleteQuery.builder().from("collection")
                                                .where(DocumentCondition.gt("age", 10).build();

The ColumnCondition has support for both ColumnQuery and ColumnDeleteQuery on fluent and builder patterns.

The main difference is that you’ll combine all the options manually on the builder instead of being transparent as the fluent way does.

Thus, it is worth checking the ColumnCondition to see all the filter options.

BucketManager

The BucketManager is the class which saves the KeyValueEntity in a synchronous way in Key-Value database.

BucketManager bucketManager = //instance;
KeyValueEntity<String> entity = KeyValueEntity.of("key", 1201);

Set<KeyValueEntity<String>> entities = Collections.singleton(entity);

bucketManager.put("key", "value");

bucketManager.put(entity);

bucketManager.put(entities);

bucketManager.put(entities, Duration.ofHours(2)); // inserts with two hours TTL

bucketManager.put(entity, Duration.ofHours(2)); // inserts with two hours TTL
Remove and Retrieve information

With a simple structure, the bucket needs a key to both retrieve and delete information from the database.

Optional<Value> value = bucketManager.get("key");

Iterable<Value> values = bucketManager.get(Collections.singletonList("key"));

bucketManager.remove("key");

bucketManager.remove(Collections.singletonList("key"));

Factory

The factory class creates the Managers.

  • BucketManagerFactory: The factory classes have the responsibility to create the BucketManager.

  • ColumnManagerFactory: The factory classes have the duty to create the Column manager.

  • DocumentManagerFactory: The factory classes have the duty to create the document collection manager.

Configuration

The configuration classes create a Manager Factory. This class has all the configuration to build the database connection.

There are a large number of diversity configuration flavors such as P2P, master/slave, thrift communication, HTTP, etc. The implementation may be different, however, but they have a method to return a Manager Factory. It is recommended that all database driver providers have a properties file to read this startup information.

Settings

The Settings interface represents the settings used in a configuration. It extends looks like a Map<String, Object>; for this reason, gives a key that can set any value as configuration.

Settings settings = Settings.builder()
    .put("key", "value")
    .build();
Map<String, Object> map = //instance;

Settings settings = Settings.of(map);

Document Configuration

For the Document collection configuration, DocumentConfiguration configures and creates DocumentManagerFactory.

Settings settings = Settings.builder()
    .put("key", "value")
    .build();
DocumentConfiguration configuration = //instance;
DocumentManagerFactory managerFactory = configuration.apply(settings);

Column Configuration

For the Column Family configuration, ColumnConfiguration creates and configures ColumnManagerFactory.

Settings settings = Settings.builder()
    .put("key", "value")
    .build();
ColumnConfiguration configuration = //instance;
ColumnManagerFactory managerFactory = configuration.apply(settings);

Key Value Configuration

For the key-value configuration, there is KeyValueConfiguration to BucketManagerFactory.

Settings settings = Settings.builder()
    .put("key", "value")
    .build();
KeyValueConfiguration configuration = //instance;
BucketManagerFactory managerFactory = configuration.apply(settings);

Querying by Text with the Communication API

The Communication API allows queries to be text. These queries are converted to an operation that already exists in the Manager interface from the query method. An UnsupportedOperationException is thrown if a NoSQL database doesn’t have support for that procedure.

Queries follow these rules:

  • All instructions end with a like break \n

  • It is case-sensitive

  • All keywords must be in lowercase

  • The goal is to look like SQL, however simpler

  • Even if a query has valid sintax a specific implementation may not support an operation. For example, a Column family database may not support queries in a different field that is not the ID field.

Key-Value Database Types

Key-Value databases support three operations: get, del and put.

get

Use the get statement to retrie data related to a key

get_statement ::=  get ID (',' ID)*

//examples
get "Apollo" //to return an element where the id is 'Apollo'
get "Diana" "Artemis" //to return a list of values from the keys
del

Use the del statement to delete one or more entities

del_statement ::=  del ID (',' ID)*

//examples
del "Apollo"
del "Diana" "Artemis"
put

Use the put statement to either insert or override values

put_statement ::=  put {KEY, VALUE [, TTL]}

//examples
put {"Diana" , "The goddess of hunt"} //adds key 'diana' and value 'The goddess of hunt'
put {"Diana" , "The goddess of hunt", 10 second} //also defines a TTL of 10 seconds
Column-Family and Document Database Types

The queries have syntax similar to SQL queries. But keep in mind that it has a limitation: joins are not supported.

They have four operations: insert, update, delete, and select.

insert

Use the insert statement to store data for an entity

insert_statement ::=  insert ENTITY_NAME (NAME = VALUE, (`,` NAME = VALUE) *) || JSON [ TTL ]

//examples
insert Deity (name = "Diana", age = 10)
insert Deity (name = "Diana", age = 10, powers = {"sun", "moon"})
insert Deity (name = "Diana", age = 10, powers = {"sun", "moon"}) 1 day
insert Deity {"name": "Diana", "age": 10, "powers": ["hunt", "moon"]}
insert Deity {"name": "Diana", "age": 10, "powers": ["hunt", "moon"]} 1 day
update

Use the update statement to update the values of an entity

update_statement ::= update ENTITY_NAME (NAME = VALUE, (`,` NAME = VALUE) *) || JSON

 //examples
update Deity (name = "Diana", age = 10)
update Deity (name = "Diana", age = 10, power = {"hunt", "moon"})
update Deity {"name": "Diana", "age": 10, "power": ["hunt", "moon"]}
delete

Use the delete statement to remove fields or entities

delete_statement ::=  delete [ simple_selection ( ',' simple_selection ) ]
                      from ENTITY_NAME
                      [ where WHERE_CLAUSE ]
//examples
delete from Deity
delete power, age from Deity where name = "Diana"
select

The select statement reads one or more fields for one or more entities. It returns a result-set of the entities matching the request, where each entity contains the fields corresponding to the query.

select_statement ::=  select ( SELECT_CLAUSE | '*' )
                      from ENTITY_NAME
                      [ where WHERE_CLAUSE ]
                      [ skip (INTEGER) ]
                      [ limit (INTEGER) ]
                      [ order by ORDERING_CLAUSE ]
//examples
select * from Deity
select name, age, adress.age from Deity order by name desc age desc
select * from Deity where birthday between "01-09-1988" and "01-09-1988" and salary = 12
select name, age, adress.age from Deity skip 20 limit 10 order by name desc age desc
where

The where keyword specifies a filter (WHERE_CLAUSE) to the query. A filter is composed of boolean statements called conditions that are combined using and or or operators.

WHERE_CLAUSE ::= CONDITION ([and | or] CONDITION)*
Conditions

Conditions are boolean statements that operate on data being queried. They are composed of three elements:

  1. Name: the data source, or target, to apply the operator

  2. Operator, defines comparing process between the name and the value.

  3. Value, that data that receives the operation.

Operators

The Operators are:

Table 1. Operators in a query
Operator Description

=

Equal to

>

Greater than

<

Less than

>=

Greater than or equal to

Less than or equal to

BETWEEN

TRUE if the operand is within the range of comparisons

NOT

Displays a record if the condition(s) is NOT TRUE

AND

TRUE if all the conditions separated by AND is TRUE

OR

TRUE if any of the conditions separated by OR is TRUE

LIKE

TRUE if the operand matches a pattern

IN

TRUE if the operand is equal to one of a list of expressions

The Value

The value is the last element in a condition, and it defines what’ll go to be used, with an operator, in a field target.

There are six types:

  • Number is a mathematical object used to count, measure and also label, where if it is a decimal, will become double, otherwise, long. E.g.: age = 20, salary = 12.12

  • String: one or more characters among either two double quotes, ", or single quotes, '. E.g.: name = "Ada Lovelace", name = 'Ada Lovelace'

  • Convert: convert is a function where given the first value parameter as number or string, it will convert to the class type of the second one. E.g.: birthday = convert("03-01-1988", java.time.LocalDate)

  • Parameter: the parameter is a dynamic value, which means it does not define the query; it’ll replace in the execution time. The parameter is at @ followed by a name. E.g.: age = @age

  • Array: A sequence of elements that can be either number or string that is between braces { }. E.g.: power = {"Sun", "hunt"}

  • JSON: JavaScript Object Notation is a lightweight data-interchange format. E.g.: siblings = {"apollo": "brother", "zeus": "father"}

skip

The skip option in a select statement defines where the query results should start.

limit

The limit option in a select statement limits the number of rows returned by a query.

order by

The order by option allows defining the order of the returned results. It takes as argument (ORDERING_CLAUSE) a list of column names along with the ordering for the column (asc for ascendant, which is the default, and desc for the descendant).

ORDERING_CLAUSE ::= NAME [asc | desc] ( NAME [asc | desc])*
TTL

Both the INSERT and PUT commands support setting a time for data in an entity to expire. It defines the time to live of an object that is composed of the integer value and then the unit that might be day, hour, minute, second, millisecond, nanosecond. E.g.: ttl 10 second

PreparedStatement

To dynamically run a query, use the prepare method in the manager for instance. It will return a PreparedStatement interface. To define a parameter to key-value, document, and column query, use the "@" in front of the name.

PreparedStatement preparedStatement = documentManager
        .prepare("select * from Person where name = @name");

preparedStatement.bind("name", "Ada");

Stream<DocumentEntity> adas = preparedStatement.result();
Warning
For more information on Apache TinkerPop and the Gremlin API, please visit this website.