-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
84 lines (74 loc) · 2.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import os
import numpy as np
train_dir = './dataset/train'
validation_dir = './dataset/validation'
MODEL_FILE = './models/model.h5'
total_train = sum([len(files) for r, d, files in os.walk(train_dir)])
total_val = sum([len(files) for r, d, files in os.walk(validation_dir)])
BATCH_SIZE = 128
EPOCHS = 20
IMG_HEIGHT = 150
IMG_WIDTH = 150
train_image_generator = ImageDataGenerator(
rescale=1./255,
rotation_range=45,
width_shift_range=.15,
height_shift_range=.15,
zoom_range=0.5
)
validation_image_generator = ImageDataGenerator(rescale=1./255) # Generator for our validation data
CLASSES = ['(', ')', ',', '-', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '?', 'I', 'SLASH', 'Ё', 'А', 'Б', 'В', 'Г', 'Д', 'Е', 'Ж', 'З', 'И', 'Й', 'К', 'Л', 'М', 'Н', 'О', 'П', 'Р', 'С', 'Т', 'У', 'Ф', 'Х', 'Ц', 'Ч', 'Ш', 'Щ', 'Ъ', 'Ы', 'Ь', 'Э', 'Ю', 'Я']
train_data_gen = train_image_generator.flow_from_directory(
batch_size=BATCH_SIZE,
directory=train_dir,
shuffle=True,
target_size=(IMG_HEIGHT, IMG_WIDTH),
)
class_names = list(train_data_gen.class_indices.keys())
print(class_names)
val_data_gen = validation_image_generator.flow_from_directory(
batch_size=BATCH_SIZE,
directory=validation_dir,
target_size=(IMG_HEIGHT, IMG_WIDTH),
)
if os.path.exists(MODEL_FILE):
model = tf.keras.models.load_model(MODEL_FILE)
model.compile(
optimizer='adam',
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
model.summary()
else:
model = Sequential([
Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
MaxPooling2D(),
Conv2D(32, 3, padding='same', activation='relu'),
MaxPooling2D(),
Conv2D(64, 3, padding='same', activation='relu'),
MaxPooling2D(),
Conv2D(128, 3, padding='same', activation='relu'),
MaxPooling2D(),
Flatten(),
Dense(512, activation='relu'),
Dense(50)
])
model.compile(
optimizer='adam',
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
model.summary()
# Train:
history = model.fit(
train_data_gen,
steps_per_epoch=total_train // BATCH_SIZE,
epochs=EPOCHS,
validation_data=val_data_gen,
validation_steps=total_val // BATCH_SIZE
)
model.save(MODEL_FILE)