-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
91 lines (80 loc) · 3.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import cv2
import numpy as np
import tensorflow as tf
from PIL import Image
from pdf2image import convert_from_path
from horizon import fix_horizon
from segmetation import lines_segmentation, word_segmentation, character_segmentation
MODEL_FILE = './models/model.h5'
CLASSES = ['(', ')', ',', '-', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '?', 'I', 'SLASH', 'Ё', 'А', 'Б', 'В', 'Г', 'Д', 'Е', 'Ж', 'З', 'И', 'Й', 'К', 'Л', 'М', 'Н', 'О', 'П', 'Р', 'С', 'Т', 'У', 'Ф', 'Х', 'Ц', 'Ч', 'Ш', 'Щ', 'Ъ', 'Ы', 'Ь', 'Э', 'Ю', 'Я']
IMG_HEIGHT = 150
IMG_WIDTH = 150
def read_pdf_file(file_name='test.pdf'):
pages = convert_from_path(file_name, 500)
count = 0
model = tf.keras.models.load_model(MODEL_FILE)
model.compile(
optimizer='adam',
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy']
)
model.summary()
output = ''
for index, page in enumerate(pages):
# Pre processing
image = np.array(page)
image = fix_horizon(image)
# TODO: Add remove watermarks and printing
# TODO: Fix blur
# TODO: Filter by Text color?
# TODO: remove long lines
# Binarize
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
binarized_image = cv2.threshold(gray_image,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
for text_line in lines_segmentation(binarized_image[1]):
count += 1
# cv2.imshow("text_line", text_line)
for word in word_segmentation(text_line):
# cv2.imshow("word", word)
previous_character = ''
recognized_word = ''
for character in character_segmentation(word):
# Generate Dataset
# cv2.imshow("character", character)
# cv2.waitKey(1000)
# cv2.waitKey(0)
# class_name = input('Print CLASS_NAME:')
# class_name = class_name.upper()
# cv2.imwrite(f"dataset/train/{class_name}/character_{count}.png", character)
# count += 1
# Reconize character with NN
result = cv2.resize(character, dsize=(IMG_WIDTH, IMG_HEIGHT), interpolation=cv2.INTER_CUBIC)
color_image = cv2.cvtColor(result, cv2.COLOR_GRAY2BGR)
input_arr = np.array([color_image])
predictions = model.predict(input_arr)
print(predictions)
character_idx = tf.argmax(predictions[0]).numpy()
print(character_idx)
value = CLASSES[character_idx]
print(value)
if value == 'SLASH':
value = '/'
if value == 'DOT':
value = '.'
if previous_character == 'Ь' and value == 'I':
value = 'Ы'
recognized_word = recognized_word[:-1]
previous_character = value
recognized_word += value
print('recognized_word:', recognized_word)
# cv2.imshow("character", character)
# cv2.waitKey(0)
output += f'{recognized_word} '
output += '\n'
print(f'LINE {count}')
output += '\n'*10
# TODO: add natural language processing
with open("output.txt", "a") as f:
f.write(output)
if __name__ == '__main__':
read_pdf_file()