The dgSPARSE Wrapper is an open-source project which compiles different sparse libraries and generates a unified sparse library. The generated sparse library exposes compatible interfaces to the NVIDIA cuSPARSE library. Users can also expose more interfaces than the NVIDIA cuSPARSE library with the dgSPARSE Wrapper project.
The dgSPARSE Wrapper project generates a dynamic link library (libcusparsewrapper.so by default). By replacing libcusparse.so (cuSAPRSE dynamic link library), programs compiled with cuSAPRSE can link this library. During runtime, the library dynamically opens different sparse libraries (e.g., cuSPARSE, dgSPARSE, and etc.)
As shown in the figure, before using dgSPARSE Wrapper, programs and frameworks linking the cuSPARSE library calls corresponding APIs.
.
├── bin: The folder which contains the generated dgSPARSE Wrapper library.
│ └── libdgsparsewrapper.so
├── example
│ └── dgl
├── include: The folder which contains necessary header files, including the symbol helper, the logger, and etc.
│ ├── common.h
│ ├── cuda-11.1: Header files of CUDA v11.1.
│ ├── dgsparse-0.1: Header files of dgSPARSE v0.1.
│ ├── logger.h
│ └── symbol_helper_cusparse.h
├── lib: The folder which contains sparse libraries to be used.
│ └── dgsparse.so
├── Makefile
├── README.md
└── src: The folder which contains CUDA interface implementations of dgSPARSE wrapper.
├── sparse_main.cc: All CUDA interface implementations. For a certain interface, users can modify the code to decide a specific implemenation from a given sparse library. Currently, all CUDA interfaces are based on CUDA v11.1.
└── symbol_helper.cc
Here we show how to run an SpMM with original cusparse library and new library wrapped with dgSPARSE-Wrapper.
- Build dgSPARSE Wrapper
cd [path-to-dgSPARSE-Wrapper]
make clean & make
- Build docker image
cd [path-to-dgSPARSE-Wrapper]/example/dgl/docker
wget https://data.dgl.ai/dataset/FB15k.zip -P install/
docker build -t dgl-gpu:torch-1.2.0-cu11 -f Dockerfile.ci_gpu_cu11 .
cd [path-to-dgSPARSE-Wrapper]
- Run container
docker run -it --runtime=nvidia --rm \
-v [path-to-dgSPARSE-Wrapper]:/dgSPARSE-Wrapper \
dgl-gpu:torch-1.2.0-cu11 \
/bin/bash
cd /dgSPARSE-Wrapper/example/cuda_spmm
make
# Test original cusparse performance
./spmm.out data/p2p-Gnutella31.mtx
or
./spmm.out data/p2p-Gnutella31.mtx 32
# Test new library performance
cp /usr/local/cuda/lib64/libcusparse.so.11.3.0.10 /usr/local/cuda/lib64/libcusparse.so.real
mkdir -p /usr/local/dgsparse/lib64/
cp /dgSPARSE-Wrapper/lib/dgsparse.so /usr/local/dgsparse/lib64/
LD_PRELOAD=/dgSPARSE-Wrapper/bin/libdgsparsewrapper.so.11.1 ./spmm.out data/p2p-Gnutella31.mtx
Here we use a Graph Neural Networks (GCN) example based on DGL. We use docker based on the dockerfile provided by DGL.
- Build dgSPARSE Wrapper
cd [path-to-dgSPARSE-Wrapper]
make clean & make
- Build docker image
cd [path-to-dgSPARSE-Wrapper]/example/dgl/docker
wget https://data.dgl.ai/dataset/FB15k.zip -P install/
docker build -t dgl-gpu:torch-1.2.0-cu11 -f Dockerfile.ci_gpu_cu11 .
cd [path-to-dgSPARSE-Wrapper]
- Run container
docker run -it --runtime=nvidia --rm \
-v [path-to-dgSPARSE-Wrapper]/example/dgl/gcn:/gcn \
-v [path-to-dgSPARSE-Wrapper]/bin:/dgsparsewrapper \
-v [path-to-dgSPARSE-Wrapper]/lib:/sparselib \
dgl-gpu:torch-1.2.0-cu11 \
/bin/bash
conda activate pytorch-ci
pip install dgl-cu111
- Run GCN based on cuSPARSE
cd /gcn
python3 train.py --dataset cora --gpu 0 --self-loop
- Run GCN based on dgSPARSE
cd /usr/local/cuda-11.3/lib64/
cp /dgsparsewrapper/libdgsparsewrapper.so.11.3 ./
mkdir -p /usr/local/dgsparse/lib64/
cp /sparselib/dgsparse.so /usr/local/dgsparse/lib64/
# rename the original cuSPARSE
mv libcusparse.so.11.3.0.10 libcusparse.so.real
rm libcusparse.so.11
# use dgSPARSE Wrapper to replace cuSPARSE
mv libdgsparsewrapper.so.11.1 libcusparse.so.11
cd /gcn
python3 train.py --dataset cora --gpu 0 --self-loop
The first version of dgSPARSE Wrapper is to be released on July, 2021.