-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy patha3c_train.py
156 lines (119 loc) · 4.93 KB
/
a3c_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import torch.optim as optim
import env as grounding_env
from models import *
from torch.autograd import Variable
import logging
def ensure_shared_grads(model, shared_model):
for param, shared_param in zip(model.parameters(),
shared_model.parameters()):
if shared_param.grad is not None:
return
shared_param._grad = param.grad
def train(rank, args, shared_model):
torch.manual_seed(args.seed + rank)
env = grounding_env.GroundingEnv(args)
env.game_init()
model = A3C_LSTM_GA(args)
if (args.load != "0"):
print(str(rank) + " Loading model ... "+args.load)
model.load_state_dict(
torch.load(args.load, map_location=lambda storage, loc: storage))
model.train()
optimizer = optim.SGD(shared_model.parameters(), lr=args.lr)
p_losses = []
v_losses = []
(image, instruction), _, _, _ = env.reset()
instruction_idx = []
for word in instruction.split(" "):
instruction_idx.append(env.word_to_idx[word])
instruction_idx = np.array(instruction_idx)
image = torch.from_numpy(image).float()/255.0
instruction_idx = torch.from_numpy(instruction_idx).view(1, -1)
done = True
episode_length = 0
num_iters = 0
while True:
# Sync with the shared model
model.load_state_dict(shared_model.state_dict())
if done:
episode_length = 0
cx = Variable(torch.zeros(1, 256))
hx = Variable(torch.zeros(1, 256))
else:
cx = Variable(cx.data)
hx = Variable(hx.data)
values = []
log_probs = []
rewards = []
entropies = []
for step in range(args.num_steps):
episode_length += 1
tx = Variable(torch.from_numpy(np.array([episode_length])).long())
value, logit, (hx, cx) = model((Variable(image.unsqueeze(0)),
Variable(instruction_idx),
(tx, hx, cx)))
prob = F.softmax(logit)
log_prob = F.log_softmax(logit)
entropy = -(log_prob * prob).sum(1)
entropies.append(entropy)
action = prob.multinomial().data
log_prob = log_prob.gather(1, Variable(action))
action = action.numpy()[0, 0]
(image, _), reward, done, _ = env.step(action)
done = done or episode_length >= args.max_episode_length
if done:
(image, instruction), _, _, _ = env.reset()
instruction_idx = []
for word in instruction.split(" "):
instruction_idx.append(env.word_to_idx[word])
instruction_idx = np.array(instruction_idx)
instruction_idx = torch.from_numpy(
instruction_idx).view(1, -1)
image = torch.from_numpy(image).float()/255.0
values.append(value)
log_probs.append(log_prob)
rewards.append(reward)
if done:
break
R = torch.zeros(1, 1)
if not done:
tx = Variable(torch.from_numpy(np.array([episode_length])).long())
value, _, _ = model((Variable(image.unsqueeze(0)),
Variable(instruction_idx), (tx, hx, cx)))
R = value.data
values.append(Variable(R))
policy_loss = 0
value_loss = 0
R = Variable(R)
gae = torch.zeros(1, 1)
for i in reversed(range(len(rewards))):
R = args.gamma * R + rewards[i]
advantage = R - values[i]
value_loss = value_loss + 0.5 * advantage.pow(2)
# Generalized Advantage Estimataion
delta_t = rewards[i] + args.gamma * \
values[i + 1].data - values[i].data
gae = gae * args.gamma * args.tau + delta_t
policy_loss = policy_loss - \
log_probs[i] * Variable(gae) - 0.01 * entropies[i]
optimizer.zero_grad()
p_losses.append(policy_loss.data[0, 0])
v_losses.append(value_loss.data[0, 0])
if(len(p_losses) > 1000):
num_iters += 1
print(" ".join([
"Training thread: {}".format(rank),
"Num iters: {}K".format(num_iters),
"Avg policy loss: {}".format(np.mean(p_losses)),
"Avg value loss: {}".format(np.mean(v_losses))]))
logging.info(" ".join([
"Training thread: {}".format(rank),
"Num iters: {}K".format(num_iters),
"Avg policy loss: {}".format(np.mean(p_losses)),
"Avg value loss: {}".format(np.mean(v_losses))]))
p_losses = []
v_losses = []
(policy_loss + 0.5 * value_loss).backward()
torch.nn.utils.clip_grad_norm(model.parameters(), 40)
ensure_shared_grads(model, shared_model)
optimizer.step()