-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy patha3c_main.py
128 lines (113 loc) · 5.32 KB
/
a3c_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import vizdoom
import argparse
import os
os.environ["OMP_NUM_THREADS"] = "1"
import numpy as np
import torch
import torch.multiprocessing as mp
import env as grounding_env
from models import A3C_LSTM_GA
from a3c_train import train
from a3c_test import test
import logging
parser = argparse.ArgumentParser(description='Gated-Attention for Grounding')
# Environment arguments
parser.add_argument('-l', '--max-episode-length', type=int, default=30,
help='maximum length of an episode (default: 30)')
parser.add_argument('-d', '--difficulty', type=str, default="hard",
help="""Difficulty of the environment,
"easy", "medium" or "hard" (default: hard)""")
parser.add_argument('--living-reward', type=float, default=0,
help="""Default reward at each time step (default: 0,
change to -0.005 to encourage shorter paths)""")
parser.add_argument('--frame-width', type=int, default=300,
help='Frame width (default: 300)')
parser.add_argument('--frame-height', type=int, default=168,
help='Frame height (default: 168)')
parser.add_argument('-v', '--visualize', type=int, default=0,
help="""Visualize the envrionment (default: 0,
use 0 for faster training)""")
parser.add_argument('--sleep', type=float, default=0,
help="""Sleep between frames for better
visualization (default: 0)""")
parser.add_argument('--scenario-path', type=str, default="maps/room.wad",
help="""Doom scenario file to load
(default: maps/room.wad)""")
parser.add_argument('--interactive', type=int, default=0,
help="""Interactive mode enables human to play
(default: 0)""")
parser.add_argument('--all-instr-file', type=str,
default="data/instructions_all.json",
help="""All instructions file
(default: data/instructions_all.json)""")
parser.add_argument('--train-instr-file', type=str,
default="data/instructions_train.json",
help="""Train instructions file
(default: data/instructions_train.json)""")
parser.add_argument('--test-instr-file', type=str,
default="data/instructions_test.json",
help="""Test instructions file
(default: data/instructions_test.json)""")
parser.add_argument('--object-size-file', type=str,
default="data/object_sizes.txt",
help='Object size file (default: data/object_sizes.txt)')
# A3C arguments
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate (default: 0.001)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor for rewards (default: 0.99)')
parser.add_argument('--tau', type=float, default=1.00, metavar='T',
help='parameter for GAE (default: 1.00)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('-n', '--num-processes', type=int, default=4, metavar='N',
help='how many training processes to use (default: 4)')
parser.add_argument('--num-steps', type=int, default=20, metavar='NS',
help='number of forward steps in A3C (default: 20)')
parser.add_argument('--load', type=str, default="0",
help='model path to load, 0 to not reload (default: 0)')
parser.add_argument('-e', '--evaluate', type=int, default=0,
help="""0:Train, 1:Evaluate MultiTask Generalization
2:Evaluate Zero-shot Generalization (default: 0)""")
parser.add_argument('--dump-location', type=str, default="./saved/",
help='path to dump models and log (default: ./saved/)')
if __name__ == '__main__':
args = parser.parse_args()
if args.evaluate == 0:
args.use_train_instructions = 1
log_filename = "train.log"
elif args.evaluate == 1:
args.use_train_instructions = 1
args.num_processes = 0
log_filename = "test-MT.log"
elif args.evaluate == 2:
args.use_train_instructions = 0
args.num_processes = 0
log_filename = "test-ZSL.log"
else:
assert False, "Invalid evaluation type"
env = grounding_env.GroundingEnv(args)
args.input_size = len(env.word_to_idx)
# Setup logging
if not os.path.exists(args.dump_location):
os.makedirs(args.dump_location)
logging.basicConfig(filename=args.dump_location+log_filename,
level=logging.INFO)
shared_model = A3C_LSTM_GA(args)
# Load the model
if (args.load != "0"):
shared_model.load_state_dict(
torch.load(args.load, map_location=lambda storage, loc: storage))
shared_model.share_memory()
processes = []
# Start the test thread
p = mp.Process(target=test, args=(args.num_processes, args, shared_model))
p.start()
processes.append(p)
# Start the training thread(s)
for rank in range(0, args.num_processes):
p = mp.Process(target=train, args=(rank, args, shared_model))
p.start()
processes.append(p)
for p in processes:
p.join()