-
Notifications
You must be signed in to change notification settings - Fork 379
/
Copy pathglobal_vars.py
344 lines (316 loc) · 12.6 KB
/
global_vars.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import gc
import yaml
import torch
from transformers import GenerationConfig
from models import alpaca, stablelm, koalpaca, flan_alpaca, mpt
from models import camel, t5_vicuna, vicuna, starchat, redpajama, bloom
from models import baize, guanaco, falcon, kullm, replit, airoboros
from models import samantha_vicuna, wizard_coder, xgen, freewilly
from models import mistral
from models import byom
cuda_availability = False
available_vrams_gb = 0
mps_availability = False
if torch.cuda.is_available():
cuda_availability = True
available_vrams_mb = sum(
[
torch.cuda.get_device_properties(i).total_memory
for i in range(torch.cuda.device_count())
]
) / 1024. / 1024
if torch.backends.mps.is_available():
mps_availability = True
def initialize_globals_byom(
base, ckpt, model_cls, tokenizer_cls,
bos_token_id, eos_token_id, pad_token_id,
mode_cpu, model_mps, mode_8bit, mode_4bit, mode_full_gpu
):
global model, model_type, stream_model, tokenizer
global model_thumbnail_tiny, device
global gen_config, gen_config_raw
global gen_config_summarization
model_type = "custom"
model, tokenizer = byom.load_model(
base=base,
finetuned=ckpt,
mode_cpu=mode_cpu,
mode_mps=mode_mps,
mode_full_gpu=mode_full_gpu,
mode_8bit=mode_8bit,
mode_4bit=mode_4bit,
model_cls=model_cls if model_cls != "" else None,
tokenizer_cls=tokenizer_cls if tokenizer_cls != "" else None
)
stream_model = model
gen_config, gen_config_raw = get_generation_config("configs/response_configs/default.yaml")
gen_config_summarization, _ = get_generation_config("configs/summarization_configs/default.yaml")
if bos_token_id != "" or bos_token_id.isdigit():
gen_config.bos_token_id = int(bos_token_id)
if eos_token_id != "" or eos_token_id.isdigit():
gen_config.eos_token_id = int(eos_token_id)
if pad_token_id != "" or pad_token_id.isdigit():
gen_config.pad_token_id = int(pad_token_id)
def initialize_globals(args):
global device, model_thumbnail_tiny, model_name
global model, model_type, stream_model, tokenizer
global remote_addr, remote_port, remote_token
global gen_config, gen_config_raw
global gen_config_summarization
model_type_tmp = "alpaca"
print(args.base_url.lower())
if "mistralai/mistral" in args.base_url.lower():
model_type_tmp = "mistral"
elif "teknium/mistral-trismegistus-7b" in args.base_url.lower():
model_type_tmp = "mistral-trismegistus"
elif "teknium/hermes-trismegistus-mistral-7b" in args.base_url.lower():
model_type_tmp = "hermes-trismegistus"
elif "teknium/openhermes-2.5-mistral-7b" in args.base_url.lower():
model_type_tmp = "mistral-openhermes-2.5"
elif "huggingfaceh4/zephyr" in args.base_url.lower():
model_type_tmp = "zephyr"
elif "meta-llama/llama-2-70b-hf" in args.base_url.lower():
model_type_tmp = "llama2-70b"
elif "codellama/codellama-34b-instruct-hf" in args.base_url.lower():
model_type_tmp = "codellama2-70b"
elif "nousresearch/nous-hermes-llama2-70b" in args.base_url.lower():
model_type_tmp = "nous-hermes2"
elif "mayaph/godzilla2-70b" in args.base_url.lower():
model_type_tmp = "godzilla2"
elif "ehartford/samantha-1.11-70b" in args.base_url.lower():
model_type_tmp = "samantha2"
elif "psmathur/orca_mini_v3_70b" in args.base_url.lower():
model_type_tmp = "orcamini2"
elif "wizardlm/wizardlm-70b" in args.base_url.lower():
model_type_tmp = "wizardlm2"
elif "garage-baind/platypus2-70b" in args.base_url.lower():
model_type_tmp = "platypus2"
elif "stable-beluga2-70b" in args.base_url.lower():
model_type_tmp = "stable-beluga2"
elif "redmond-puffin-" in args.base_url.lower():
model_type_tmp = "puffin"
elif "upstage/llama-2-70b" in args.base_url.lower():
model_type_tmp = "upstage-llama2"
elif "upstage/llama-" in args.base_url.lower():
model_type_tmp = "upstage-llama"
elif "codellama/codellama-" in args.base_url.lower():
model_type_tmp = "codellama"
elif "llama-2" in args.base_url.lower():
model_type_tmp = "llama2"
elif "xgen" in args.base_url.lower():
model_type_tmp = "xgen"
elif "orca_mini" in args.base_url.lower():
model_type_tmp = "orcamini"
elif "open-llama" in args.base_url.lower():
model_type_tmp = "openllama"
elif "wizardcoder" in args.base_url.lower():
model_type_tmp = "wizard-coder"
elif "wizard-vicuna" in args.base_url.lower():
model_type_tmp = "wizard-vicuna"
elif "llms/wizardlm" in args.base_url.lower() or \
"wizardlm/wizardlm" in args.base_url.lower():
model_type_tmp = "wizardlm"
elif "chronos" in args.base_url.lower():
model_type_tmp = "chronos"
elif "lazarus" in args.base_url.lower():
model_type_tmp = "lazarus"
elif "samantha" in args.base_url.lower():
model_type_tmp = "samantha-vicuna"
elif "airoboros" in args.base_url.lower():
model_type_tmp = "airoboros"
elif "replit" in args.base_url.lower():
model_type_tmp = "replit-instruct"
elif "kullm" in args.base_url.lower():
model_type_tmp = "kullm-polyglot"
elif "nous-hermes" in args.base_url.lower():
model_type_tmp = "nous-hermes"
elif "guanaco" in args.base_url.lower():
model_type_tmp = "guanaco"
elif "wizardlm-uncensored-falcon" in args.base_url.lower():
model_type_tmp = "wizard-falcon"
elif "falcon" in args.base_url.lower():
model_type_tmp = "falcon"
elif "baize" in args.base_url.lower():
model_type_tmp = "baize"
elif "stable-vicuna" in args.base_url.lower():
model_type_tmp = "stable-vicuna"
elif "vicuna" in args.base_url.lower():
model_type_tmp = "vicuna"
elif "mpt" in args.base_url.lower():
model_type_tmp = "mpt"
elif "redpajama-incite-7b-instruct" in args.base_url.lower():
model_type_tmp = "redpajama-instruct"
elif "redpajama" in args.base_url.lower():
model_type_tmp = "redpajama"
elif "starchat" in args.base_url.lower():
model_type_tmp = "starchat"
elif "camel" in args.base_url.lower():
model_type_tmp = "camel"
elif "flan-alpaca" in args.base_url.lower():
model_type_tmp = "flan-alpaca"
elif "openassistant/stablelm" in args.base_url.lower():
model_type_tmp = "os-stablelm"
elif "stablelm" in args.base_url.lower():
model_type_tmp = "stablelm"
elif "fastchat-t5" in args.base_url.lower():
model_type_tmp = "t5-vicuna"
elif "koalpaca-polyglot" in args.base_url.lower():
model_type_tmp = "koalpaca-polyglot"
elif "alpacagpt4" in args.ft_ckpt_url.lower():
model_type_tmp = "alpaca-gpt4"
elif "alpaca" in args.ft_ckpt_url.lower():
model_type_tmp = "alpaca"
elif "llama-deus" in args.ft_ckpt_url.lower():
model_type_tmp = "llama-deus"
elif "vicuna-lora-evolinstruct" in args.ft_ckpt_url.lower():
model_type_tmp = "evolinstruct-vicuna"
elif "alpacoom" in args.ft_ckpt_url.lower():
model_type_tmp = "alpacoom"
elif "guanaco" in args.ft_ckpt_url.lower():
model_type_tmp = "guanaco"
else:
print("unsupported model type")
quit()
print(f"determined model type: {model_type_tmp}")
device = "cpu"
if args.mode_remote_tgi:
device = "cpu"
elif args.mode_cpu or args.mode_cpu_gptq:
device = "cpu"
elif args.mode_mps or args.mode_mps_gptq:
device = "mps"
else:
device = "cuda"
try:
if model is not None:
del model
if stream_model is not None:
del stream_model
if tokenizer is not None:
del tokenizer
gc.collect()
if device == "cuda":
torch.cuda.empty_cache()
elif device == "mps":
torch.mps.empty_cache()
except NameError:
pass
model_type = model_type_tmp
model_name = args.model_name
remote_addr = None
remote_port = None
remote_token = None
if not args.mode_remote_tgi:
load_model = get_load_model(model_type_tmp)
model, tokenizer = load_model(
base=args.base_url,
finetuned=args.ft_ckpt_url,
gptq=args.gptq_url,
gptq_base=args.gptq_base_url,
mode_cpu=args.mode_cpu,
mode_mps=args.mode_mps,
mode_full_gpu=args.mode_full_gpu,
mode_8bit=args.mode_8bit,
mode_4bit=args.mode_4bit,
mode_gptq=args.mode_gptq,
mode_mps_gptq=args.mode_mps_gptq,
mode_cpu_gptq=args.mode_cpu_gptq,
force_download_ckpt=args.force_download_ckpt,
local_files_only=args.local_files_only
)
model.eval()
stream_model = model
else:
remote_addr = args.remote_addr
remote_port = args.remote_port
remote_token = args.remote_token
model_thumbnail_tiny = args.thumbnail_tiny
gen_config, gen_config_raw = get_generation_config(args.gen_config_path)
gen_config_summarization, _ = get_generation_config(args.gen_config_summarization_path)
def get_load_model(model_type):
if model_type == "alpaca" or \
model_type == "alpaca-gpt4" or \
model_type == "llama-deus" or \
model_type == "nous-hermes" or \
model_type == "lazarus" or \
model_type == "chronos" or \
model_type == "wizardlm" or \
model_type == "openllama" or \
model_type == "orcamini" or \
model_type == "llama2" or \
model_type == "upstage-llama" or \
model_type == "puffin" or \
model_type == "codellama":
return alpaca.load_model
elif model_type == "stable-beluga2" or \
model_type == "upstage-llama2" or \
model_type == "platypus2" or \
model_type == "wizardlm2" or \
model_type == "orcamini2" or \
model_type == "samantha2" or \
model_type == "godzilla2" or \
model_type == "nous-hermes2" or \
model_type == "llama2-70b" or \
model_type == "codellama2-70b":
return freewilly.load_model
elif model_type == "stablelm" or model_type == "os-stablelm":
return stablelm.load_model
elif model_type == "koalpaca-polyglot":
return koalpaca.load_model
elif model_type == "kullm-polyglot":
return kullm.load_model
elif model_type == "flan-alpaca":
return flan_alpaca.load_model
elif model_type == "camel":
return camel.load_model
elif model_type == "t5-vicuna":
return t5_vicuna.load_model
elif model_type == "stable-vicuna":
return alpaca.load_model
elif model_type == "starchat":
return starchat.load_model
elif model_type == "wizard-coder":
return wizard_coder.load_model
elif model_type == "mpt":
return mpt.load_model
elif model_type == "redpajama" or \
model_type == "redpajama-instruct":
return redpajama.load_model
elif model_type == "vicuna":
return alpaca.load_model
elif model_type == "evolinstruct-vicuna" or \
model_type == "wizard-vicuna":
return alpaca.load_model
elif model_type == "alpacoom":
return bloom.load_model
elif model_type == "baize":
return baize.load_model
elif model_type == "guanaco":
return guanaco.load_model
elif model_type == "falcon" or model_type == "wizard-falcon":
return falcon.load_model
elif model_type == "replit-instruct":
return replit.load_model
elif model_type == "airoboros":
return airoboros.load_model
elif model_type == "samantha-vicuna":
return samantha_vicuna.load_model
elif model_type == "xgen":
return xgen.load_model
elif model_type == "mistral" or \
model_type == "zephyr" or \
model_type == "mistral-trismegistus" or \
model_type == "hermes-trismegistus" or \
model_type == "mistral-openhermes-2.5":
return mistral.load_model
else:
return None
def get_generation_config(path):
with open(path, 'rb') as f:
generation_config = yaml.safe_load(f.read())
generation_config = generation_config["generation_config"]
return GenerationConfig(**generation_config), generation_config
def get_constraints_config(path):
with open(path, 'rb') as f:
constraints_config = yaml.safe_load(f.read())
return ConstraintsConfig(**constraints_config), constraints_config["constraints"]