-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexplain.py
72 lines (58 loc) · 1.96 KB
/
explain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
import io
import random
import matplotlib.pyplot as plt
import numpy as np
from pyarrow.parquet import ParquetFile
import shap
import tensorflow as tf
BACKGROUND_SIZE = 1000
SAMPLE_SIZE = 500
# Implements reservoir sampling
def update_sample(samples, N, sample):
if sample is None:
return
if len(samples) < BACKGROUND_SIZE:
samples.append(str(sample))
else:
s = int(random.random() * N)
if s < BACKGROUND_SIZE:
samples[s] = str(sample)
class_names = np.load("classes.npy", allow_pickle=True)
parser = argparse.ArgumentParser()
parser.add_argument("class_name", choices=class_names)
args = parser.parse_args()
# Get indexes of samples matching the given
# class in the first SAMPLE_SIZE values
pq_labels = ParquetFile("../sherlock-project/data/data/raw/train_labels.parquet")
class_idx = list(
np.where(
pq_labels.read(columns=["type"]).columns[0].to_numpy()[:SAMPLE_SIZE]
== args.class_name
)[0]
)
# See https://github.com/slundberg/shap/issues/1406
shap.explainers._deep.deep_tf.op_handlers["AddV2"] = (
shap.explainers._deep.deep_tf.passthrough
)
# Load the trained model
model = tf.keras.models.model_from_json(open("nn_model_sherlock.json").read())
model.load_weights("nn_model_weights_sherlock.h5")
# Produce a randomly sample of background from the training data
background = []
for i, line in enumerate(open("preprocessed_train.txt")):
update_sample(background, i, line)
matrix = np.loadtxt(io.StringIO("".join(background)))
del background
# Load sample values matching the given class
sample = np.loadtxt(open("preprocessed_train.txt", "r"), max_rows=SAMPLE_SIZE)[
class_idx, :
]
# Use SHAP to create a summary plot
e = shap.DeepExplainer(model, matrix)
shap_values = e.shap_values(sample)
feature_names = [line.strip() for line in open("pattern_ids.txt")]
shap.summary_plot(
shap_values, sample, class_names=class_names, feature_names=feature_names
)
plt.savefig("shap.png")