-
Notifications
You must be signed in to change notification settings - Fork 108
/
IntroDataVizRAndGgplot2.R
174 lines (142 loc) · 4.77 KB
/
IntroDataVizRAndGgplot2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#
# Copyright 2017 Data Science Dojo
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# This R source code file corresponds to the Data Science Dojo webinar
# titled "An Introduction to Data Visualization with R and ggplot2"
#
#install.packages("ggplot2")
library(ggplot2)
# Load Titanic titanicing data for analysis. Open in spreadsheet view.
titanic <- read.csv("titanic.csv", stringsAsFactors = FALSE)
View(titanic)
# Set up factors.
titanic$Pclass <- as.factor(titanic$Pclass)
titanic$Survived <- as.factor(titanic$Survived)
titanic$Sex <- as.factor(titanic$Sex)
titanic$Embarked <- as.factor(titanic$Embarked)
#
# We'll start our visual analysis of the data focusing on questions
# related to survival rates. Specifically, these questions will use
# the factor (i.e., categorical) variables in the data. Factor data
# is very common in the business context and ggplot2 offers many
# powerful features for visualizing factor data.
#
#
# First question - What was the survival rate?
#
# As Survived is a factor (i.e., categorical) variable, a bar chart
# is a great visualization to use.
#
ggplot(titanic, aes(x = Survived)) +
geom_bar()
# If you really want percentages.
prop.table(table(titanic$Survived))
# Add some customization for labels and theme.
ggplot(titanic, aes(x = Survived)) +
theme_bw() +
geom_bar() +
labs(y = "Passenger Count",
title = "Titanic Survival Rates")
#
# Second question - What was the survival rate by gender?
#
# We can use color to look at two aspects (i.e., dimensions)
# of the data simultaneously.
#
ggplot(titanic, aes(x = Sex, fill = Survived)) +
theme_bw() +
geom_bar() +
labs(y = "Passenger Count",
title = "Titanic Survival Rates by Sex")
#
# Third question - What was the survival rate by class of ticket?
#
ggplot(titanic, aes(x = Pclass, fill = Survived)) +
theme_bw() +
geom_bar() +
labs(y = "Passenger Count",
title = "Titanic Survival Rates by Pclass")
#
# Fourth question - What was the survival rate by class of ticket
# and gender?
#
# We can leverage facets to further segment the data and enable
# "visual drill-down" into the data.
#
ggplot(titanic, aes(x = Sex, fill = Survived)) +
theme_bw() +
facet_wrap(~ Pclass) +
geom_bar() +
labs(y = "Passenger Count",
title = "Titanic Survival Rates by Pclass and Sex")
#
# Next, we'll move on to visualizing continuous (i.e., numeric)
# data using ggplot2. We'll explore visualizations of single
# numeric variables (i.e., columns) and also illustrate how
# ggplot2 enables visual drill-down on numeric data.
#
#
# Fifth Question - What is the distribution of passenger ages?
#
# The histogram is a staple of visualizing numeric data as it very
# powerfully communicates the distrubtion of a variable (i.e., column).
#
ggplot(titanic, aes(x = Age)) +
theme_bw() +
geom_histogram(binwidth = 5) +
labs(y = "Passenger Count",
x = "Age (binwidth = 5)",
title = "Titanic Age Distribtion")
#
# Sixth Question - What are the survival rates by age?
#
ggplot(titanic, aes(x = Age, fill = Survived)) +
theme_bw() +
geom_histogram(binwidth = 5) +
labs(y = "Passenger Count",
x = "Age (binwidth = 5)",
title = "Titanic Survival Rates by Age")
# Another great visualization for this question is the box-and-whisker
# plot.
ggplot(titanic, aes(x = Survived, y = Age)) +
theme_bw() +
geom_boxplot() +
labs(y = "Age",
x = "Survived",
title = "Titanic Survival Rates by Age")
#
# Seventh Question - What is the survival rates by age when segmented
# by gender and class of ticket?
#
# A related visualization to the histogram is a density plot. Think of
# a density plot as a smoothed version of the histogram. Using ggplot2
# we can use facets to allow for visual drill-down via density plots.
#
ggplot(titanic, aes(x = Age, fill = Survived)) +
theme_bw() +
facet_wrap(Sex ~ Pclass) +
geom_density(alpha = 0.5) +
labs(y = "Age",
x = "Survived",
title = "Titanic Survival Rates by Age, Pclass and Sex")
# If you prefer histograms, no problem!
ggplot(titanic, aes(x = Age, fill = Survived)) +
theme_bw() +
facet_wrap(Sex ~ Pclass) +
geom_histogram(binwidth = 5) +
labs(y = "Age",
x = "Survived",
title = "Titanic Survival Rates by Age, Pclass and Sex")