From a45dce2c6934bb3adb76d48a8b932a8a9e91c665 Mon Sep 17 00:00:00 2001 From: Dan Davison Date: Thu, 10 Dec 2020 16:42:51 +0000 Subject: [PATCH] A complete answer for a question? --- analysis--berkeley-202a-final.tex | 44 +++++++++++++++++++++++++++++++ mathematics.sty | 1 + 2 files changed, 45 insertions(+) diff --git a/analysis--berkeley-202a-final.tex b/analysis--berkeley-202a-final.tex index 12b2615..6b89ab8 100644 --- a/analysis--berkeley-202a-final.tex +++ b/analysis--berkeley-202a-final.tex @@ -208,15 +208,59 @@ \section*{Math 202A - Final Exam - Dan Davison - \texttt{ddavison@berkeley.edu}} I wonder whether we can discard a null set from $V$ so that our point $x$ is necessarily \end{proof} + + \newpage \begin{mdframed} \includegraphics[width=400pt]{img/analysis--berkeley-202a-final-246a.png} \end{mdframed} +\begin{proof} + $\mu$ is not a measure because it is not countably additive. + + To see this, let $I_n = (-n, -(n - 1)] \union [n-1, n)$, and let $\mc I = \{I_n ~:~ n \in \N\}$. Then $\mc I$ + is a pairwise disjoint, countable collection of sets and $\bigcup_{n=1}^\infty \mc I = \R$, + therefore $\mu\(\bigcup_{n=1}^\infty \mc I\) = 1$ since $\R$ is unbounded. + + However $I_n$ is bounded for all $n$ and + so $\sum_{n=1}^\infty \mu(I_n) = \sum_{n=1}^\infty 0 = 0 \neq \mu\(\bigcup_{n=1}^\infty \mc I\)$. +\end{proof} + + \begin{mdframed} \includegraphics[width=400pt]{img/analysis--berkeley-202a-final-cd70.png} \end{mdframed} +\begin{proof} + Note that $f$ is continuous with compact support and so $f$ attains its bounds. Let $A = \inf f$ + and $B = \sup f$. + + Note that the integrand is bounded above by the constant integrable function $h(x) = B$ defined on $[0, 1]$. + Therefore we may apply the dominated convergence theorem, yielding + \begin{align*} + \limninf \int_{[0, 1]} f(g(x)^n) \dx = \int_{[0, 1]} \limninf f(g(x)^n) \dx. + \end{align*} + Let $U = g^{-1}(\{1\})$. We have $0 \leq g(x) \leq 1$ and therefore + \begin{align*} + \limninf g(x)^n = + \begin{cases} + 1 & x \in U \\ + 0 & \text{otherwise}. + \end{cases} + \end{align*} + Since $g$ is measurable, $U$ is measurable, since it is a preimage of a measurable set. Let $\alpha = m(U)$. + I believe that ``measurable​'' in the question refers to Lebesgue measure, so we have that $m([0, 1]) = 1$ + and $0 \leq \alpha \leq 1$. Therefore + \begin{align*} + \int_{[0, 1]} \limninf f(g(x)^n) \dx + &= \int_U \limninf f(g(x)^n) \dx + \int_{[0, 1] \setminus U} \limninf f(g(x)^n) \dx \\ + &= \int_U f(1) + \int_{[0, 1] \setminus U} f(0) \\ + &= \alpha f(1) + (1 - \alpha) f(0) \\ + &\in [f(0), f(1)]. + \end{align*} +\end{proof} + + \newpage \begin{mdframed} \includegraphics[width=400pt]{img/analysis--berkeley-202a-final-f5b6.png} diff --git a/mathematics.sty b/mathematics.sty index 499904d..4c492f9 100644 --- a/mathematics.sty +++ b/mathematics.sty @@ -431,6 +431,7 @@ \newcommand{\lcm}{\text{lcm}} \newcommand{\cts}{\text{cts}} +\newcommand{\isect}{\cap} \newcommand{\union}{\cup} \newcommand{\disjunion}{\sqcup} \newcommand{\pushout}{\sqcup} \ No newline at end of file