-
Notifications
You must be signed in to change notification settings - Fork 2
/
misc--cambridge-1a.tex
348 lines (274 loc) · 11.1 KB
/
misc--cambridge-1a.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
\documentclass[12pt]{article}
\usepackage{mathematics}
\begin{document}
\subsection*{1A}
\begin{mdframed}
\includegraphics[width=400pt]{img/misc--cambridge-1a-2017-1-1A.png}
\end{mdframed}
\begin{proof}(Algebraic)\\
Note that
$\cos\theta = \cos^2\frac{1}{2}\theta - \sin^2\frac{1}{2}\theta = 2\cos^2\frac{1}{2}\theta - 1$.
We have $z = \cos\theta + i\sin\theta$ and therefore
\begin{align*}
|1 + z| &= \sqrt{(1 + \cos\theta)^2 + \sin^2\theta}
= \sqrt{2(1 + \cos\theta)}
= \sqrt{2\Big(1 + 2\cos^2\frac{1}{2}\theta - 1\Big)}
= 2\cos\frac{1}{2}\theta\\
|1 - z| &= \sqrt{(1 - \cos\theta)^2 + \sin^2\theta}
= \sqrt{2(1 - \cos\theta)}
= \sqrt{2(1 - (2\cos^2\frac{1}{2}\theta - 1))}
= 2\sin\frac{1}{2}\theta.
\end{align*}
\end{proof}
\begin{proof}(Geometric)\\
\begin{mdframed}
\includegraphics[width=300pt]{img/misc--cambridge-1a-2017-1-1A-diagram.png}
\end{mdframed}
$OABC$ is a rhombus, with sides of length 1 and $\angle AOC=\theta$. The diagonal $OB$ bisects
$\angle AOC$, therefore $\angle OBC = \theta/2$. $\angle BOD$ is a right angle since it is formed
from a triangle inscribed in a circle. Hypotenuse $BD$ has length 2, since $C$ is the centre of a
second unit circle with radii $CB$ and $CD$. Therefore the length of $OB$ is
$2\cos\frac{1}{2}\theta$ and the length of $OD$ is $2\sin\frac{1}{2}\theta$.
\end{proof}
\newpage
\subsection*{2C}
\begin{mdframed}
\includegraphics[width=400pt]{img/misc--cambridge-1a-2017-1-2c.png}
\end{mdframed}
\begin{claim*}
$(AB)^T = B^TA^T$
\end{claim*}
\begin{proof}
Let $i, j \in \{1, \ldots, n\}$. Then
\begin{align*}
\((AB)^T\)_{ij} = (AB)_{ji}
= \sum_{l=1}^n A_{jl}B_{li}
= \sum_{l=1}^n (A^T)_{lj}(B^T)_{il}
= (B^TA^T)_{ij}
\end{align*}
\end{proof}
\begin{lemma*}
$(A^k)^T = (A^T)^k$.
\end{lemma*}
\begin{proof}
Note that $(A^m)^T(A^T)^n = (AA^{m-1})^T(A^T)^n = (A^{m-1})^T(A^T)^{n+1}$. By iterating this
formal manipulation $k$ times, we have $(A^k)^T = (A^k)^T(A^T)^0 = (A^0)^T(A^T)^k = (A^T)^k$.
\end{proof}
\newpage
\begin{claim*}
$(e^A)^T = e^{(A^T)}$
\end{claim*}
\begin{proof}
Note that $(e^A)_{ij} := \sum_{k=0}^\infty \frac{(A^k)_{ij}}{k!}$, where $A^0 := I$ and
$0! := 1$. Therefore
\begin{align*}
\((e^A)^T\)_{ij} = \sum_{k=0}^\infty \frac{((A^k)^T)_{ij}}{k!}
= \sum_{k=0}^\infty \frac{((A^T)^k)_{ij}}{k!}
= \(e^{(A^T)}\)_{ij} .
\end{align*}
\end{proof}
\begin{problem*}
For $t \in \R$ we define matrices $Q_k$ such that $e^{tA}e^{tA^T} = \sum_{k=0}^\infty
Q_kt^k$. Calculate $Q_0, Q_1, Q_2$.
\end{problem*}
\begin{proof}[Solution]~\\
Note that
\begin{align*}
e^{tA}e^{tA^T}
&=
\(\sum_{k=0}^\infty\frac{(tA)^k}{k!}\)
\(\sum_{k=0}^\infty \frac{(tA^T)^k}{k!}\)\\
&=
\(\sum_{k=0}^\infty\frac{t^k}{k!}A^k\)
\(\sum_{k=0}^\infty \frac{t^k}{k!}(A^k)^T\).
\end{align*}
Therefore, by considering the coefficients of $t^0, t^1$ and $t^2$ in the expansion,
\begin{align*}
Q_0 &= I\\
Q_1 &= A + A^T\\
Q_2 &= AA^T + \frac{1}{2}(A^2 + (A^2)^T).
\end{align*}
If $e^{tA}$ is orthogonal, then
$e^{tA}e^{tA^T} = e^{tA}e^{((tA)^T)} = e^{tA}(e^{tA})^T = e^{tA}(e^{tA})^\1 = I = \sum_{k=0}^\infty Q_kt^k$.
Therefore $\sum_{k=1}^\infty Q_kt^k = 0$ for all $t$.
Therefore $Q_k = 0$ for $k \in \{1, 2, \ldots\}$ \red{TODO: proof}.
In particular, $Q_1 = 0$, therefore $A^T = -A$.
As a check, we have $Q_2 = -A^2 + \frac{1}{2}(A^2 + (-A)^2) = 0$, as required.
\end{proof}
\newpage
\subsection*{3F}
\begin{mdframed}
\includegraphics[width=400pt]{img/misc--cambridge-1a-2017-1-3f.png}
\end{mdframed}
\begin{proof}
Assume that $s_n \to x$ as $n \to \infty$. We will show that $s_n \leq a_n \leq x$, for all $n$,
therefore $a_n \to x$ as $n \to \infty$, as required.
First note that $s_{n+1} = \frac{n}{n+1}s_n + \frac{1}{n+1}a_{n+1}$.
% Note that $s_{n+1} = \frac{1}{n+1}\(\sum_{k=1}^na_k + a_{n+1}\) = \frac{n}{n+1}s_n + \frac{1}{n+1}a_{n+1}$.
It's intuitively obvious that $s_n \leq a_n$ for all $n$. To prove this, note that it's true for
$n = 1$; assume for induction that it's true for $n = k$. Then we have
$s_{k+1} = \frac{k}{k+1}s_k + \frac{1}{k+1}a_{k+1} \leq \frac{k}{k+1}a_k + \frac{1}{k+1}a_{k+1}
\leq a_{k+1}$, as required.
Finally we show that $a_n \leq x$ for all $n$. Seeking a contradiction, assume that there exists
$M$ such that $a_M > x$. Let $\epsilon = a_M - x > 0$, so that $a_n > x + \epsilon$ for $n > M$
(see diagram). Then for $n > M$ we have
\begin{align*}
s_n &= \frac{1}{n}\sum_{k=1}^M a_k + \frac{1}{n}\sum_{k=M+1}^n a_k\\
&> \frac{1}{n}\sum_{k=1}^M a_k + \frac{n - M}{n}(x + \epsilon).
\end{align*}
Therefore $\lim_{n\to\infty}s_n > x + \epsilon$ which is a contradiction, proving that
$a_n \leq x$ for all $n$.
\begin{mdframed}
\includegraphics[width=400pt]{img/misc--cambridge-1a-2017-1-3f-diagram.png}
\end{mdframed}
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/misc--cambridge-1a-2017-1-9D-1.png}
\end{mdframed}
\begin{definition*}[Completeness of reals I]
For an ordered set: every non-empty subset that's bounded above has a least upper bound.
\end{definition*}
\begin{definition*}[Completeness of reals II]
Every Cauchy sequence converges (to a value in the set).
\end{definition*}
\begin{theorem*}[Intermediate Value Theorem]~\\
Let $a, b \in \R$, and $f:[a, b] \to \R$ be continuous. Let $u$ lie strictly between $f(a)$ and
$f(b)$. Then there exists $c \in (a, b)$ such that $f(c) = u$.
\end{theorem*}
\begin{remark*}
The proof first uses completeness of $\R$ (every non-empty subset with an upper bound has a least
upper bound / supremum) to establish that a supremum $c$ exists. Then it uses continuity of $f$
at that supremum to show $f(c) = u$.
\end{remark*}
\begin{proof}
Define $S = \{x \in [a, b] ~|~ f(x) < u\}$.
Note that $a \in S$ so $S \neq \emptyset$, and $S$ bounded above by $b$ so $\sup S$ exists, by
completeness of the reals. Let $c = \sup S$. We claim that $f(c) = u$.
To prove this, we will show that for all $\epsilon > 0$, we have
$u - \epsilon < f(c) < u + \epsilon$.
Fix an $\epsilon > 0$.
Since $f$ is continuous at $c$, we have that there exists $\delta > 0$ such that
\begin{align*}
|x - c| < \delta \implies |f(x) - f(c)| < \epsilon.
\end{align*}
First consider a point $a^* \in (c - \delta, c)$. We have
\begin{align*}
f(a^*) < u ~~~~~~~&\text{since $a^* \in S$}\\
f(c) - \epsilon < f(a^*) < f(c) + \epsilon ~~~~~~~&\text{by continuity of $f$ at $c$},
\end{align*}
therefore $f(c) < u + \epsilon$.
Next consider a point $a^{**} \in (c, c + \delta)$. We have
\begin{align*}
f(a^{**}) > u ~~~~~~~&\text{since $a^{**} \notin S$}\\
f(c) - \epsilon < f(a^{**}) < f(c) + \epsilon ~~~~~~~&\text{by continuity of $f$ at $c$},
\end{align*}
therefore $f(c) > u - \epsilon$.
Therefore $u - \epsilon < f(c) < u + \epsilon$ as required.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/misc--cambridge-1a-2017-1-9D-2.png}
\end{mdframed}
\begin{definition*}
Let $f: \R \to \R$ and $a \in \R$. If the limits
\begin{align*}
\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}\\
\lim_{x \to a^-} \frac{f(x) - f(a)}{x - a}
\end{align*}
both exist and are equal then $f$ is differentiable at $a$.
\end{definition*}
\begin{definition*}
Let $f: \R \to \R$ and $a \in \R$. If the limit
\begin{align*}
\lim_{x \to a} \frac{f(x) - f(a)}{x - a}
\end{align*}
exists then $f$ is differentiable at $a$.
\end{definition*}
\begin{theorem*}
$f$ differentiable everywhere on $\R$ does not imply $f'$ continuous everywhere on $\R$.
\end{theorem*}
\begin{proof}
We exhibit a counterexample: a function that is differentiable everywhere on $\R$ but $f'$ is not
continuous everywhere.
Consider
\begin{align*}
f(x) :=
\begin{cases}
x^2\sin(\frac{1}{x}),~~~~~~~&x \neq 0\\
0 ~~~~~~~&x = 0,
\end{cases}
\end{align*}
the derivative of which is\footnote{The derivative at $x = 0$ is
$\lim_{x\to 0}\frac{x^2\sin\(\frac{1}{x}\) - 0}{x - 0} = \lim_{x\to 0}x\sin\(\frac{1}{x}\)$. Note
that $x\sin\(\frac{1}{x}\)$ is bounded above and below by $x$ and $-x$. Since these both have a
limit of 0 at $x=0$, then so must $x\sin\(\frac{1}{x}\)$. }
\begin{align*}
f'(x) =
\begin{cases}
2x\sin(\frac{1}{x}) -\cos(\frac{1}{x}) ~~~~~~~ &x \neq 0\\
0 ~~~~~~~ &x = 0.
\end{cases}
\end{align*}
Note that $f(x)$ is continuous since it is differentiable. But $f'(x)$ is not continuous at 0,
since close to 0, arbitrarily small changes to $x$ will cause $\cos\(\frac{1}{x}\)$ to vary between
-1 and 1. To prove this, note that
\begin{align*}
\lim_{x\to 0} f'(x) = 2\lim_{x\to 0} x\sin\(\frac{1}{x}\) - \lim_{x\to 0}\cos\(\frac{1}{x}\)
= - \lim_{x\to 0}\cos\(\frac{1}{x}\).
\end{align*}
Fix $0 < \epsilon \leq 1$ and suppose that there exists $\delta > 0$ such that
$|x| < \delta \implies |\cos\(\frac{1}{x}\)| < \epsilon$. But now define
$k = \lceil\frac{1}{\delta}\rceil$ and consider $x = \frac{1}{2k\pi}$. We have $|x| < \delta$ but
$\cos\(\frac{1}{x}\) = 1 \geq \epsilon$, a contradiction proving that
$\lim_{x\to 0}\cos\(\frac{1}{x}\)$ does not exist.
\end{proof}
\begin{theorem*}[Mean-value theorem]
Let $a, b \in \R$ with $b > a$, and $f:[a,b] \to \R$ be continuous on $[a, b]$ and differentiable
on $(a, b)$. Then there exists $x \in (a, b)$ such that $f'(x) = \frac{f(b) - f(a)}{(b - a)}$.
\end{theorem*}
\begin{mdframed}
\includegraphics[width=400pt]{img/misc--cambridge-1a-2017-1-9D-3.png}
\end{mdframed}
\begin{theorem*}
Let $f: \R \to \R$ be differentiable. Let $a, b \in \R$ with $a < b$. If
$f'(a) \leq y \leq f'(b)$, then there exists $c \in [a, b]$ such that $f'(c) = y$.
\end{theorem*}
\begin{remark*}
This does not follow from the Intermediate Value Theorem, since that theorem requires continuity:
the derivative of a continuous function may not itself be continuous.
\end{remark*}
\begin{proof}
Define
\begin{align*}
g(x) :=
\begin{cases}
\frac{f(x) - f(a)}{x - a} ~~~~~~~ &x \neq a\\
f'(a) ~~~~~~~ &x = a.
\end{cases}
\end{align*}
{\bf Scratch}\\
Is $g$ continuous? Suppose it is.
We know $f'(a) \in \Im g$.
Note that, by the Mean Value Theorem, there exists $x \in (a, b)$ such that $f'(x) = g(b)$.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/misc--cambridge-1a-10D-a.png}
\end{mdframed}
$f$ is continuous at $x_0 \in (a, b)$ iff $\lim_{x\to x_0} f(x) = f(x_0)$.
We know:
\begin{enumerate}
\item The limit $L = f'(c) := \lim_{x\to c} \frac{f(x) - f(c)}{x - c}$ exists.
\item For every $\epsilon > 0$ there exists $\delta > 0$ such that
$|x - c| < \delta \implies \Big|\frac{f(x) - f(c)}{x - c} - L\Big| < \epsilon$.
\item $f$ is continuous at $c$: $\lim_{x\to c}f(x) = f(c)$.
\item There exists $\delta > 0$ such that $|x - c| < \delta \implies f(c) \leq f(x)$.
\end{enumerate}
We want:
\begin{align*}
L = 0.
\end{align*}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/misc--cambridge-1a-10D-b.png}
\end{mdframed}
\end{document}