-
Notifications
You must be signed in to change notification settings - Fork 2
/
linear-algebra--oxford-A0.tex
859 lines (665 loc) · 28.2 KB
/
linear-algebra--oxford-A0.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
\section{Oxford A0 - Linear Algebra}\footnotetext{\url{https://courses.maths.ox.ac.uk/node/5353}}
\subsection{Sheet 1}
\subsubsection{} % 1
\begin{mdframed}
\includegraphics[width=450pt]{img/linear-algebra-a0-1-1-a.png}\\
\end{mdframed}
Let\footnote{Unlike the question, I am trying to use notation that
distinguishes between integers and their equivalence classes.}
$a, b, c \in \Z$ with $0 \leq a < p, ~~ 0 \leq b < p, ~~ 0 \leq c < p$.
Let $\bar a, \bar b, \bar c \in \F$ be equivalence classes of integers modulo $p$.
The field axioms are listed below, together with proof that they hold for $\F_p$.
\begin{enumerate}
\item \textbf{$\F_p$ is an abelian group under addition}\\
Define $\bar a + \bar b := \bar{a + b}$, then:
\begin{enumerate}
\item \textit{Existence of identity}: $\bar 0$ is the identity since
$\bar a + \bar 0 = \bar{a + 0} = \bar{a}$ for all $\bar a \in \F_p$.
\item \textit{Existence of inverses}: $(\bar a)^\1 = \bar{-a}$ since
$\bar a + \bar{-a} = \bar{a + -a} = \bar{0}$ for all $a \in \F_p$.
\item \textit{Commutativity}:
$\bar a + \bar b = \bar{a + b} = \bar{b} + \bar{a}$ for all $a, b \in \F_p$.
\item \textit{Associativity}:
$\bar a + (\bar b + \bar c) = \bar a + \bar {b + c} = \bar{a + b + c} =
\bar{a + b} + \bar{c} = (\bar a + \bar b) + \bar{c}$.
\end{enumerate}
\item \textbf{$\F_p\setminus\{\bar 0\}$ is an abelian group under multiplication}\\
Define $\bar a ~ \bar b := \bar{ab}$, then:
\begin{enumerate}
\item \textit{Existence of identity}: $\bar 1$ is the identity since
$\bar a \bar 1 = \bar{a\cdot 1} = \bar{a}$ for all $\bar a \in \F_p$.
\newpage
\item \textit{Existence of inverses for everything except additive identity}:\\\\
The claim is that for all $\bar a \in \F_p \setminus \{\bar 0\}$ there
exists $\bar b \in \F_p$ such that $\bar a ~ \bar b = \bar 1$.
\textbf{Proof 1}\\
We show that elements cannot repeat in a row/column of the group operation
table, therefore something muct be the inverse.
\begin{align*}
a \cdot b &= a \cdot c \mod p\\
a(b - c) &= 0 \mod p\\
a &= 0 \text{~or~~} b = c \mod p
\end{align*}
\textbf{Proof 2}\\
Fix an arbitrary $a \in \{1, \ldots, p-1\}$.
The claim is equivalent to the following: there exists
$b \in \{0, 1, \ldots, p\}$ such that for all $i, j \in \Z$ there exists
$k \in \Z$ such that $(ip + a)(jp + b) = kp + 1$.
But note that $(ip + a)(jp + b) = p(ijp + aj + bi) + ab$ and therefore
\begin{align*}
&(ip + a)(jp + b) = kp + 1\\
\iff &ab = p(k - ijp - aj - bi) + 1.
\end{align*}
Since $k$ can be chosen freely, the condition is simply that for all
$i, j \in \Z$ there exists $k \in \Z$ such that $ab = kp + 1$.
Note\footnote{I eventually allowed myself to google for a hint here which
brought up people pointing to Bezout's identity.} that $a$ and $p$ are
coprime (gcd is 1). By Bezout's identity, there exists $b, -k \in \Z$
such that
\begin{align*}
ba + (-k)p = 1 \iff ab = kp + 1. \qed
\end{align*}
\item \textit{Commutativity}:
$\bar a ~ \bar b = \bar{ab} = \bar{b} ~ \bar{a}$ for all $a, b \in \F_p$.
\item \textit{Associativity}:
$\bar a (\bar b \bar c) = \bar a + \bar {bc} = \bar{abc} =
\bar{ab}~\bar{c} = (\bar a ~ \bar b) \bar{c}$.
\end{enumerate}
\item \textbf{Distributive axiom}
\begin{enumerate}
\item \textit{Multiplication distributes over addition}: $\bar a (\bar b + \bar c) = \bar a (\bar{b + c}) = \bar{a(b+c)} = \bar{ab +
ac} = \bar{ab} + \bar{ac} = \bar{a}~\bar{b} + \bar{a}~\bar{c}$
\end{enumerate}
\end{enumerate}
There are $p^n$ elements in a vector space of dimension $n$ over the field $\F_p$.
\newpage
\begin{mdframed}
\includegraphics[width=200pt]{img/linear-algebra-a0-1-1-b.png}
\end{mdframed}
\textit{Remark}: This is like the 8 vectors that form the unit cube in
$\R^3$, except that when extended beyond the cube by vector addition or
scalar multiplication they ``wrap around''.
Note that
\begin{align*}
(\F_2)^3 = \{&\bar 0, \bar 1\}^3\\
= \{&(\bar 0, \bar 0, \bar 0),\\
&(\bar 0, \bar 0, \bar 1),\\
&(\bar 0, \bar 1, \bar 0),\\
&(\bar 0, \bar 1, \bar 1),\\
&(\bar 1, \bar 0, \bar 0),\\
&(\bar 1, \bar 0, \bar 1),\\
&(\bar 1, \bar 1, \bar 0),\\
&(\bar 1, \bar 1, \bar 1)\}.
\end{align*}
The set of subspaces of $(\F_2)^3$ is
\begin{align*}
&\{\{(\bar 0, \bar 0, \bar 0)\}\} ~~~~~~~~~~~~~~~~~~~~~ \cup\\
&\{\{(\bar 0, \bar 0, \bar 0), x\} ~|~ x \in (\F_2)^3\} ~~~ \cup\\
&\{\{(\bar 0, a, b) ~|~ a, b \in \F_2\}\} ~~~~~~~ \cup\\
&\{\{(a, \bar 0, b) ~|~ a, b \in \F_2\}\} ~~~~~~~ \cup\\
&\{\{(a, b, \bar 0) ~|~ a, b \in \F_2\}\} ~~~~~~~ \cup\\
&\{(\F_2)^3\}.
\end{align*}
\red{Per AC this is missing, at least, a subspace of size 4. Also see Sylov theorems.}
\newpage
\subsubsection{} % 2
\begin{mdframed}
\includegraphics[width=450pt]{img/linear-algebra-a0-1-2.png}\\
\end{mdframed}
We need to:
\begin{enumerate}
\item \textbf{Exhibit a proper subspace $S[x] \subset \R[x]$ and a bijection $f:\R[x] \to S[x]$}\\\\
Let $a_i \in \R$ for $i = 0, 1, 2, \ldots$ so that
$\R[x] = \{a_0 + a_1x^1 + a_2x^2 + \ldots\}$.
Define $S[x] = \{0 + a_1x^1 + a_2x^2 + a_3x^3 + \ldots\}$, i.e. the restriction
of $\R[x]$ to those polynomials that have constant term zero.
$S[x]$ is a proper subspace of $\R[x]$ since it contains the zero polynomial,
and is closed under addition and scalar multiplication.
Define $f: \R[x] \to S[x]$ where
$f(a_0 + a_1x^1 + a_2x^2 + \ldots) = 0 + a_0x^1 + a_1x^2 + a_2x^3 + \ldots$.
$f$ is clearly injective, since if $f(r(x)) = f(r'(x))$ then their
coefficients $a_0, a_1, \ldots$ are the same and hence $r(x) = r'(x)$.
Also, $f$ is clearly surjective since if
$s(x) = a_1x^1 + a_2x^2 + a_3x^3 + \ldots$ then
$s(x) = f(a_1 + a_2x^1 + a_3x^2 + \ldots)$.
\item \textbf{Prove that $f$ preserves addition}\\\\
Let $a_i,b_i \in \R$ for $i = 0, 1, 2, \ldots$
Let $r(x) = a_0 + a_1x^1 + a_2x^2 + \ldots$ and $r'(x) = b_0 + b_1x^1 + b_2x^2 + \ldots$.
Then
\begin{align*}
f\Big(r(x) + r'(x)\Big)
&= f\Big((a_0 + b_0) + (a_1 + b_1)x^1 + (a_2 + b_2)x^2 + \ldots\Big)\\
&= 0 + (a_0 + b_0)x^1 + (a_1 + b_1)x^2 + (a_2 + b_2)x^3 + \ldots\\
&= \Big(0 + a_0x^1 + a_1x^2 + a_2x^3 + \ldots \Big) \\
&+ \Big(0 + b_0x^1 + b_1x^2 + b_2x^3 + \ldots \Big) \\
&= f\Big(r(x)\Big) + f\Big(r'(x)\Big).
\end{align*}
\item \textbf{Prove that $f$ preserves scalar multiplication}
\begin{align*}
f\Big(\lambda r(x)\Big)
&= f\Big(\lambda a_0 + \lambda a_1x^1 + \lambda a_2x^2 + \ldots \Big) \\
&= 0 + \lambda a_0x^1 + \lambda a_1x^2 + \lambda a_2x^3 + \ldots \\
&= \lambda(0 + a_0x^1 + a_1x^2 + a_2x^3 + \ldots) \\
&= \lambda f\Big(r(x)\Big)
\end{align*}
\end{enumerate}
\newpage
\subsubsection{} % 3
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-1-3.png}\\
\end{mdframed}
Note:
\begin{enumerate}
\item The space of functions $f:\N \to \R$ is the space of real-valued
infinite sequences.
\item A basis is countable iff a bijection exists between the basis and $\N$.
\end{enumerate}
\red{I haven't managed to do this. What follows is what I was thinking, but
must be wrong since it contradicts the question.}
Let $x_i \in \R$ for
$i \in \N$ and define the following:
\begin{itemize}
\item $F_n := \{(x_1, x_2, \ldots, x_n) ~|~ x_1, x_2, \ldots, x_n \in \R\}$ is
the space of functions\\$f:\{1,2, \ldots, n\} \to \R$
\item $F_\infty := \{(x_1, x_2, \ldots) ~|~ x_1, x_2, \ldots \in \R\}$ is the
space of functions $f:\N \to \R$.
\end{itemize}
Note that $F_1 = \{x_1 ~|~ x_1 \in \R\} = \R$. Therefore every basis for $F_1$ has cardinality
1 (every basis is a set containing a single non-zero real number).
Similarly, $F_2 = \R^2$, and every basis of $F_2$ has cardinality 2.
\red{Basically it seems like the following is a basis of this space of functions,
but it is countable:}
\begin{align*}
&(1, 0, 0, \ldots),\\
&(0, 1, 0, \ldots),\\
&(0, 0, 1, \ldots),\\
&\ldots\\
\end{align*}
\red{I think the answer here is that $E$ is a basis for $F_\infty$ iff every
element of $F_\infty$ can be expressed as a linear combination of a
\textit{finite} number of elements from $E$. But this is untrue, at least for
the basis I have suggested, since for example the constant function
$f(i) = 1 ~\forall i$ fails.}
% ~\\
% \hrule
\newpage
\subsubsection{} % 4
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-1-4.png}\\
\end{mdframed}
Let $P$ be the set of polynomials modulo $f(x)$.
The field axioms are listed below, together with proof that they hold for $P$.
\begin{enumerate}
\item \textbf{$P$ is an abelian group under addition}\\\\
Define $\bar{g(x)} + \bar{h(x)} := \bar{g(x) + h(x)}$, then:
\begin{enumerate}
\item \textit{Existence of identity}:\\
The additive identity is $\bar 0 = \Big\{f(x)g(x) ~|~ g(x) \in \F[x]\Big\}$.
\item \textit{Existence of inverses}:\\
$\bar{g(x)}^{~\1} = \bar{-g(x)}$ for all $g(x) \in P$.
\item \textit{Commutativity and Associativity}:\\
Proofs of these are essentially the same as for $\F_p$ (question 1).
\end{enumerate}
\item \textbf{$P\setminus\{\bar 0\}$ is an abelian group under multiplication}\\\\
Define $\bar{g(x)} \cdot \bar{h(x)} := \bar{g(x)\cdot h(x)}$, then:
\begin{enumerate}
\item \textit{Existence of identity}:\\
The multiplicative identity is $\bar 1 = \Big\{f(x)g(x) + 1~|~ g(x) \in \F[x]\Big\}$.
\item \textit{Existence of inverses for everything except additive identity}:\\\\
The claim is that for all $\bar a \in \F_p \setminus \{\bar 0\}$ there
exists $\bar b \in \F_p$ such that $\bar a ~ \bar b = \bar 1$.
Fix an arbitrary $a \in \{1, \ldots, p-1\}$.
The claim is equivalent to the following: there exists
$b \in \{0, 1, \ldots, p\}$ such that for all $i, j \in \Z$ there exists
$k \in \Z$ such that $(ip + a)(jp + b) = kp + 1$.
But note that $(ip + a)(jp + b) = p(ijp + aj + bi) + ab$ and therefore
\begin{align*}
&(ip + a)(jp + b) = kp + 1\\
\iff &ab = p(k - ijp - aj - bi) + 1.
\end{align*}
Since $k$ can be chosen freely, the condition is simply that for all
$i, j \in \Z$ there exists $k \in \Z$ such that $ab = kp + 1$.
Note\footnote{I eventually allowed myself to google for a hint here which
brought up people pointing to Bezout's identity.} that $a$ and $p$ are
coprime (gcd is 1). By Bezout's identity, there exists $b, -k \in \Z$
such that
\begin{align*}
ba + (-k)p = 1 \iff ab = kp + 1. \qed
\end{align*}
\item \textit{Commutativity}:
$\bar a ~ \bar b = \bar{ab} = \bar{b} ~ \bar{a}$ for all $a, b \in \F_p$.
\item \textit{Associativity}:
$\bar a (\bar b \bar c) = \bar a + \bar {bc} = \bar{abc} =
\bar{ab}~\bar{c} = (\bar a ~ \bar b) \bar{c}$.
\end{enumerate}
\item \textbf{Distributive axiom}
\begin{enumerate}
\item \textit{Multiplication distributes over addition}: $\bar a (\bar b + \bar c) = \bar a (\bar{b + c}) = \bar{a(b+c)} = \bar{ab +
ac} = \bar{ab} + \bar{ac} = \bar{a}~\bar{b} + \bar{a}~\bar{c}$
\end{enumerate}
\end{enumerate}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-eg-2-6.png}
\end{mdframed}
\begin{claim*}
$m\Z$ is an ideal in $\Z$.
\end{claim*}
\begin{proof}Let $s, t \in m\Z$ and $i, j, k \in \Z$.
Then $s = mi$ and $t = mj$ for some $i, j$.
Therefore $s - t = m(i - j) \in m\Z$ and $ks = sk = m(ki) \in m\Z$.
\end{proof}
\begin{claim*}
Every ideal in $\Z$ is of the form $m\Z$.
\end{claim*}
\begin{proof}
Let $I$ be an ideal in $\Z$ and let $m$ be the smallest non-zero positive integer in $I$.
% Let $i \in I$. We have that $i - m \in I$ and that $mi \in I$.
% We want to show that $i \in m\Z$.
Let $i \in I$. We want to show that $i \in m\Z$.
We have:
$ki \in I$ for all $k \in \Z$.
$i - j \in I$ for all $j \in I$.
$i - m \in I$.
% By the definition of an ideal, $ki \in I$ for
% all $k \in \Z$. Therefore $i$ is a multiple of $m$.
% Conversely, suppose $i \in m\Z$. We want to show that $i \in I$.
% is a multiple of $m$. So $i = km$ for some $k \in \Z$.
\end{proof}
\newpage
\subsubsection{} % 5
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-1-5-a.png}\\
\end{mdframed}
The set of ideals of a field $\F$ is $\{a\F ~|~ a \in \F\} = \{\{0\}, \F\}$.
The set of ideals of the ring $\Z$ is $\{m\Z ~|~ m \in \Z\}$.
\begin{definition*}
Let $R, S$ be rings and let $r_1, r_2 \in R$. A \emph{ring homomorphism} is $f:R \to S$ such that
$f(r_1 + r_2) = f(r_1) + f(r_2)$ and $f(r_1r_2) = f(r_1)f(r_2)$.
\end{definition*}
\begin{claim*}
The kernel of any ring homomorphism is an ideal.
\end{claim*}
\begin{proof}
Let $H$ be the kernel of a ring homomorphism $f:R \to S$, and let
We want to show that
\begin{enumerate}
\item $h_1 - h_2 \in H$ for all $h_1, h_2 \in H$, and \label{ring-hom-ideal-1}
\item $rh \in H$ for all $r \in R, h \in H$. \label{ring-hom-ideal-2}
\end{enumerate}
We have $f(h_1 - h_2) = f(h_1) + f(-h_2) = f(h_1) - f(h_2) = 0 - 0 = 0$, proving
(\ref{ring-hom-ideal-1}).
And $f(rh) = f(r)f(h) = f(r)\cdot 0 = 0$, proving (\ref{ring-hom-ideal-2}).
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-1-5-b.png}\\
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/ideal-in-integers.png}
\end{mdframed}
\begin{mdframed}
\begin{remark*}
Recall that in group theory a quotient group is formed by:
\begin{enumerate}
\item Identify a subgroup.
\item Form cosets.
\item Inherit operation on cosets from operation on original group elements.
\end{enumerate}
But only if the subgroup is normal.
Here, the ideal $I$ is playing the role of subgroup.~\\
\end{remark*}
\end{mdframed}
Let $S$ and $T$ be cosets, and let $r \in S$ and $r' \in T$. We need to show that $rr' + I$ is the
same coset, for all choices of $r$, $r'$.
\newpage
\begin{mdframed}
\includegraphics[width=280pt]{img/linear-algebra-a0-1-5-c.png}\\
\end{mdframed}
\newpage
\subsubsection{} % 6
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-1-6-a.png}\\
\end{mdframed}
It is an abelian group under addition since:
\begin{enumerate}
\item The zero matrix is the additive identity.
\item For all $r \in R$, we have $-r \in R$. Therefore for $A \in M_n(R)$ we have $-A \in M_n(R)$.
\item It is closed (result is a matrix of same dimension).
\item Addition commutes.
\end{enumerate}
Under multiplication:
\begin{enumerate}
\item It is closed because addition and multiplication in the ring are closed.
\item Multiplication is associative.
\item Both distributive laws hold ($A(B + C) = AB + AC$ and $(B + C)A = BA + CA$.)
\end{enumerate}
Therefore it is a ring (but not a field since multiplicative inverses may not exist).
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-1-6-b.png}\\
\end{mdframed}
Let $I$ be an ideal of a ring $R$.
Note that:
\begin{enumerate}
\item If $r$ is an entry in a matrix $A \in M_n(R)$ then $r \in R$.
\item If $s$ is an entry in a matrix $\Gamma \in M_n(R/I)$ then $s \in R/I$ is a coset.
\end{enumerate}
The ``canonical surjection'' $R \to R/I$ is defined by $r \mapsto rI$.
It induces a map $f:M_n(R) \to M_n(R/I)$ defined by $A \mapsto \Gamma$, where
$\Gamma_{ij} = A_{ij}I$ for all $i,j \in \{1, \ldots, n\}$.
Let $A, B \in M_n(R)$.
Then
\begin{align*}
\Big(f(A + B)\Big)_{ij}
&= (A_{ij} + B_{ij})I ~~~~~~~~~~~~~~~~~~~\text{(by definition of the induced map)}\\
&= A_{ij}I + B_{ij}I ~~~~~~~~~~~~~~~~~~~~\text{(by definition of addition on the cosets)}\\
&= \Big(f(A)\Big)_{ij} + \Big(f(B)\Big)_{ij} ~~~~~~~\text{(by definition of the induced map)}\\
&= \Big(f(A) + f(B)\Big)_{ij}~~~~~~~~~~~~~\text{(by definition of matrix addition)},\\
\end{align*}
and
\begin{align*}
\Big(f(AB)\Big)_{ij}
&= (AB)_{ij}I ~~~~~~~~~~~~~~~~~~~\text{(by definition of the induced map)}\\
&= \sum_k A_{ik}B_{kj}I\\
&= \sum_k (A_{ik}I)(B_{kj}I)\\
&= \Big(f(A)f(B)\Big)_{ij}.
\end{align*}
Therefore $f$ preserves the additive and multiplicative structure on $M_n(R)$.
\red{TODO: show it is surjective}
The additive identity in $M_n(R/I)$ is the matrix containing $I$ in every entry.
The kernel is the set of matrices that get mapped to the (additive) identity in $M_n(R/I)$.
Therefore the kernel is $\{A ~|~ A_{ij} \in I ~\forall~ i, j \in \{1, \ldots, n\}\}$.
For example, suppose $R = \Z$ and $I = 3\Z$.
Then $R/I = \{3\Z, 3\Z + 1, 3\Z + 2\}$.
The kernel is $\{A ~|~ A_{ij} \in 3\Z\}$.
\begin{mdframed}
\includegraphics[width=350pt]{img/linear-algebra-a0-1-6-c.png}\\
\end{mdframed}
The set of diagonal matrices is the sole ideal?
\newpage
\subsubsection{} % 7
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-1-7.png}\\
\end{mdframed}
\subsubsection{} % 8
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-1-8.png}\\
\end{mdframed}
\subsubsection{} % 9
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-1-9-a.png}\\
\end{mdframed}
\begin{mdframed}
\includegraphics[width=250pt]{img/linear-algebra-a0-1-9-b.png}\\
\end{mdframed}
\begin{mdframed}
\includegraphics[width=350pt]{img/linear-algebra-a0-1-9-c.png}\\
\end{mdframed}
\begin{mdframed}
\includegraphics[width=220pt]{img/linear-algebra-a0-1-9-d.png}\\
\end{mdframed}
\newpage
\subsection{Sheet 2}
% https://math.stackexchange.com/questions/555726/inducing-a-linear-map-on-quotient-spaces
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-1.png}
\end{mdframed}
\begin{mdframed}
\begin{example*}
Let $V = \R^3$, $U$ be a one-dimensional subspace, and $T$ be rotation around the axis
$U$. Choose an orthonormal basis $\{w, v, u\}$ for $\R^3$ where $u \in U$. Then the matrix
of $T$ is
\begin{align*}
\matMMMxNNN
{\cos\theta}{-\sin\theta}{0}
{\sin\theta}{~~\cos\theta}{0}
{0} { 0}{1}.
\end{align*}
$V/U$ is the set of lines parallel to $U$. $U$ is the kernel of a projection onto $\R^2$, and
$V/U \cong \R^2$.
``In some sense'' the matrix of $\bar T:V/U \to V/U$ is the block
$\matMMxNN{\cos\theta}{-\sin\theta}
{\sin\theta}{~~\cos\theta}$.
\end{example*}
\end{mdframed}
Let $v + U$ be a coset of $U$. Then the induced mapping is given by
\begin{align*}
\bar T(v + U) &= \{T(v + u) ~|~ u \in U\}\\
&= \{T(v) + T(u) ~|~ u \in U\}\\
&= T(v) + T(U)\\
&= T(v) + U.
\end{align*}
\begin{claim*}
$\bar T$ is a linear map.
\end{claim*}
\begin{proof}~\\
\red{TODO: is there any question about it being well-defined?}
Vector addition:
\begin{align*}
\bar T\Big((v + U) + (w + U)\Big)
&= \bar T\Big((v + w) + U\Big) ~~~~~~~~~~~~~\text{(by definition of addition on quotient group)}\\
&= T(v + w) + U ~~~~~~~~~~~~~~~~~\text{(by definition of $\bar T$)}\\
&= (T(v) + T(w)) + U ~~~~~~~~~~\text{(by linearity of $T$)}\\
&= (T(v) + U) + (T(w) + U) ~~\text{(by definition of addition on quotient group)}\\
&= \bar T(v + U) + \bar T(w + U) ~~~~~~~\text{(by definition of $\bar T$)}
\end{align*}
Multiplication by a scalar $\lambda \in \F$:
\begin{align*}
\bar T\Big(\lambda(v + U)\Big)
&= \bar T\Big(\lambda v + \lambda U\Big) ~~\text{(by (scalar)(SetOfVectors) and (vector) + (SetOfVectors) syntax)}\\
&= T(\lambda v) + \lambda U~~~~\text{(by definition of $\bar T$)}\\
&= \lambda T(v) + \lambda U~~~~\text{(by linearity of $T$)}\\
&= \lambda\Big(T(v) + U\Big) ~~\text{(by (scalar)(SetOfVectors) and (vector) + (SetOfVectors) syntax)}\\
&= \lambda \bar T(v + U)~~~~~\text{(by definition of $\bar T$)}
\end{align*}
\end{proof}
\begin{definition*}[Minimal polynomial]
Let $V$ be a finite-dimensional vector space over $\F$, and let $A$ be a matrix of a linear
transformation $T:V \to V$.
The \emph{minimal polynomial} $m_A(x)$ is the monic polynomial $p(x)$ of minimal degree such that
$p(A) = 0$.
\end{definition*}
\begin{lemma*}~\\
\begin{enumerate}
\item The minimal polynomial exists for any endomorphic linear transformation.
\item The minimal polynomial is unique.
\item Let $f(x)$ be a polynomial. If $f(A) = 0$ then $m_A | f$.
\end{enumerate}
\end{lemma*}
\begin{claim*}
The minimal polynomial of $\bar T$ divides the minimal polynomial of $T$.
\end{claim*}
\begin{proof} (I)\\
\begin{align*}
m_T(\bar T)
\end{align*}
$\vdots$
We have $m_T(\bar T) = 0$, therefore $m_{\bar T}| m_T$.
\end{proof}
\begin{proof} (II)\\
Let $J = \dim U$ and $K = \dim V$.
Pick a basis of $U$ and extend it to a basis $\mathcal B$ of $V$.
Order the elements of the basis $\mathcal B$ such that the last $J$ elements are the basis of
$U$.
Let $A$ be the matrix of $T$ with respect to $\mathcal B$.
Then, since $U$ is invariant under $T$, $A$ has a block structure
\begin{align*}
A = \matMMxNN{~\bar A}{0}
{~0 }{B}.
\end{align*}
Claim: $\bar A$ is the matrix of $\bar T$ with respect to some basis of $V/U$.
Note that
\begin{align*}
\lambda A^n = \matMMxNN{~\lambda{\bar A}^n}{0}
{~0 }{\lambda B^n}.
\end{align*}
Let $p(x)$ be a polynomial. Then $p(A) = 0 \implies p(\bar A) = 0$.
Let $m_A(x)$ and $m_{\bar A}(x)$ be the minimal polynomials of $A$ and $\bar A$ respectively.
By definition, $m_A(A) = 0$.
Therefore $m_A(\bar A) = 0$, therefore $m_{\bar A}| m_A$.
Equivalently, $m_{\bar T}| m_T$.
\end{proof}
% \newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-2.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-2-1.png}
\end{mdframed}
Let $D^n:\mc P \to \mc P$ be the $n$-th derivative operator.
Then $\mc P_n$ is the kernel of $D^{n+1}$.
Furthermore, $D^n$ is a homomorphism (preserves addition of polynomials).
By the First Isomorphism Theorem, $\mc P/\mc P_n \cong \Im D^{n+1}$.
\begin{claim*}
$\Im D^n = \mc P$ (surjective) for all $n \in \N$.
\end{claim*}
\begin{proof}
Let $p(x) = \sum_{i=1}^k\lambda_ix^i \in \mc P$. Then
$D^n \Big(x^n\sum_{i=1}^k\frac{\lambda_i}{(i>+n)_{(n)}}x^i\Big) = p(x)$, so $D^n$ is surjective.
\end{proof}
Therefore $\mc P/\mc P_n \cong \mc P$.
Therefore $\mc P/\mc P_n$ is infinite-dimensional.
\begin{remark*}
Each element of $\mc P/\mc P_n$ is a set of polynomials differing only by additive terms
of degree $n$ or less.
\end{remark*}
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-2-2.png}
\end{mdframed}
Let $\mc E$ and $\mc O$ be the set of even and odd polynomials respectively.
Let $f:\mc P \to \mc P$ be given by $p(x) := $ (the odd terms of $p(x)$).
Then $\Im f = \mc O$ and $\Ker f = \mc E$.
Therefore $\mc P/\mc E \cong \mc O$, infinite-dimensional.
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-2-3.png}
\end{mdframed}
Let $f: \mc P \to \mc P$ be given by $f(p(x)) := $ (remainder after division by $x^n$).
\begin{claim*}
$f$ is a homomorphism: $f(p(x) + q(x)) = f(p(x)) + f(q(x))$.
\end{claim*}
Note that $x^n\mc P$ is the kernel of $f$.
\begin{claim*}
$\Im f = \mc P_{n-1}$.
\end{claim*}
\red{TODO: prove or disprove}.
If these claims are true, then $\mc P/x^n\mc P \cong \mc P_n$, finite-dimensional.
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-3.png}
\end{mdframed}
\begin{claim*}
$L$ is linear.
\end{claim*}
\begin{proof} Note that multiplication of polynomials distributes over addition:
\begin{align*}
\Big(\sum_{i=0}^k a_ix^i\Big)\Big(\sum_{i=0}^k b_ix^i + \sum_{i=0}^k c_ix^i\Big)
&= \Big(\sum_{i=0}^k a_ix^i\Big)\Big(\sum_{i=0}^k (b_i + c_i)x^i\Big)\\
&= \Big(\sum_{i=0}^{k}\sum_{j=0}^k a_i(b_j + c_j)x^{i+j}\Big)\\
&= \Big(\sum_{i=0}^{k}\sum_{j=0}^k a_ib_jx^{i+j}\Big) +
\Big(\sum_{i=0}^{k}\sum_{j=0}^k a_ic_jx^{i+j}\Big)\\
&= \Big(\sum_{i=0}^k a_ix^i\Big)\Big(\sum_{i=0}^k b_ix^i\Big) +
\Big(\sum_{i=0}^k a_ix^i\Big)\Big(\sum_{i=0}^k c_ix^i\Big).
\end{align*}
Therefore
\begin{align*}
L(af(x) + bg(x)) &= x^2(af(x) + bg(x))\\
&= ax^2f(x) + bx^2g(x)\\
&= aL(f(x)) + bL(g(x)),
\end{align*}
where $a, b \in \F$.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-3.png}
\end{mdframed}
First, a theorem and a corollary:
\begin{theorem*}
Let $L:V \to W$ be an isomorphism\footnote{note: not linear; but why not homomorphism?} between
vector spaces $V$ and $W$, and let $A \subseteq V, B \subseteq W$ be subspaces. Then the formula
$\bar L(v + A) = L(v) + B$ gives a well-defined linear map $\bar L:V/A \to W/B$ if and only if
$L(A) \subseteq B$.
\end{theorem*}
Therefore
\begin{corollary*}
Let $L:V \to V$ with $U$ a subspace of $V$. Then $L$ induces a linear map of quotients
$\bar L:V/U \to V/U$ given by $v + U \mapsto L(v) + U$ if and only if $U$ is invariant under $T$.
\end{corollary*}
~\\
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-2-1.png}
\end{mdframed}
% Recall that:
% \begin{enumerate}
% \item $\mc P_n$ is the kernel of $D^{(n+1)}$.
% \item Every coset $\Big(p(x) + \mc P_n\Big) \in \mc P/\mc P_n$ is a set of polynomials differing
% only by additive terms of degree $n$ or less.
% \end{enumerate}
Note that $L(\mc P_n) = x^2\mc P_n = \mc P_{n+2} \not\subseteq \mc P_n$.
Therefore the formula
\begin{align*}
\bar L\Big(p(x) + \mc P_n\Big) := x^2p(x) + \mc P_n
\end{align*}
does not give a well-defined map $\bar L:\mc P/\mc P_n \to \mc P/\mc P_n$.
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-2-2.png}
\end{mdframed}
% Recall that:
% \begin{enumerate}
% \item $\mc P/\mc E \cong \mc O$, infinite-dimensional.
% \item Every coset is of the form $o(x) + \mc E$, for some odd polynomial $o(x) \in \mc O$.
% \end{enumerate}
Note that $L(\mc E) = x^2\mc E = \mc E$. Therefore the formula
\begin{align*}
\bar L\Big(p(x) + \mc E\Big) := x^2p(x) + \mc E
\end{align*}
does give a well-defined linear map of quotients $\bar L:\mc P/\mc E \to \mc P/\mc E$.
A basis for $\mc E$ is $\{1, x^2, x^4, \ldots\}$.
To extend this basis to a basis for $\mc P$ we can add the elements of $\{x, x^3, x^5, \ldots\}$.
Therefore (theorem) a basis for $\mc P/\mc E$ is $\{x + \mc E, x^3 + \mc E, x^5 + \mc E, \ldots\}$.
However, the quotient space $\mc P/\mc E \cong \mc O$ is infinite-dimensional and therefore
$\bar L$ has no matrix representation.
% \begin{mdframed}
% \begin{remark*}
% Note that $\mc E$ is not in the basis since it is the additive identity in $\mc P/\mc E$: Let 0
% be the additive identity in the field $\F$. Then
% $\mc E = 0(x + \mc E) + 0(x^3 + \mc E) + \ldots$. This is true since in general
% $0\vec v = (1 - 1)\vec v = \vec v - \vec v = \vec 0$.
% \end{remark*}
% \end{mdframed}
% Since the quotient space is infinite-dimensional, $\bar L$ has no finite matrix representation.
% As an ``infinite matrix'' it would be
% \begin{align*}
% \begin{pmatrix}
% 0 & 0 & 0 & \cdots\\
% 1 & 0 & 0 & \cdots\\
% 0 & 1 & 0 & \cdots\\
% \vdots & \vdots & \vdots & \ddots
% \end{pmatrix},
% \end{align*}
% that is, an infinite-dimensional identity matrix below a row of zeros.
\begin{mdframed}
\includegraphics[width=400pt]{img/linear-algebra-a0-2-2-3.png}
\end{mdframed}
% Recall that:
% \begin{enumerate}
% \item $x^n\mc P$ is the kernel of the homomorphism which sends $p(x) \in \mc P$ to its remainder
% after division by $x^n$. The image is $\mc P_{n-1}$.
% \item Therefore $\mc P/x^n\mc P \cong \mc P_{n-1}$, finite-dimensional.
% \item Every coset is of the form $p(x) + x^n\mc P$.
% \end{enumerate}
Note that $L(x^n\mc P) = x^{n+2}\mc P \subseteq x^n\mc P$.
Therefore the formula
\begin{align*}
\bar L\Big(p(x) + x^n\mc P\Big) := x^2p(x) + x^n\mc P.
\end{align*}
gives a well-defined linear map of quotients.
A basis for $\mc P$ is $\{1, x, x^2, \ldots\}$.
A basis for $x^n\mc P$ is $\{x^n, x^{n+1}, \ldots\}$.
Therefore (theorem) a basis for the quotient space $\mc P/x^n\mc P$ is
\begin{align*}
\{1 + x^n\mc P, x + x^n\mc P, x^2 + x^n\mc P, \ldots, x^{n-1} + x^n\mc P\}.
\end{align*}
A matrix representation for $\bar L$ with respect to this basis is
\begin{align*}
[\vec a_1, \vec a_2, \ldots, \vec a_{n-1}],
\end{align*}
where $\vec a_{j}$ is a column vector with 1 in its $(j + 2)$-th entry, and 0 elsewhere.