-
Notifications
You must be signed in to change notification settings - Fork 2
/
linear-algebra--oxford--prelims-exam.tex
1214 lines (929 loc) · 38.8 KB
/
linear-algebra--oxford--prelims-exam.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[12pt]{article}
\usepackage{enumerate}
\usepackage{mathematics}
\DeclareMathOperator{\id}{\mathrm{id}}
\begin{document}
\section{Exercises in lecture notes}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-1.png}
\end{mdframed}
\begin{enumerate}[label=(\alph*)]
\item
\begin{align*}
\matMMMxNNN{2}{~~4}{-3}
{1}{-4}{~~3}
{3}{-5}{~~2} \vecMMM{x}{y}{z} = \vecMMM{0}{0}{1}\\
~\\
\begin{amatrix}{3}
2 & ~~4 & -3 & 0\\
1 & -4 & ~~3 & 0\\
3 & -5 & ~~2 & 1
\end{amatrix}&
~\\
~\\
\begin{amatrix}{3}
2 & ~~4 & -3 & 0\\
0 & -22 & ~~13 & 2\\
0 & -12 & ~~9 & 0\\
\end{amatrix}&
\end{align*}
\end{enumerate}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-2.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-3.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-4.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-5.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-6.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-7.png}
\end{mdframed}
\begin{enumerate}[label=(\alph*)]
\item
$\matMMxNN{a}{b}{c}{d}\matMMxNN{1}{0}{0}{0} = \matMMxNN{a}{0}
{c}{0}$.\\~\\
$\matMMxNN{1}{0}{0}{0}\matMMxNN{a}{b}{c}{d} = \matMMxNN{a}{b}
{0}{0}$.\\~\\
Equality iff $b = c = 0$. I.e. matrices of the form
$\matMMxNN{a}{0}
{0}{d}$ (diagonal).
\item
$\matMMxNN{a}{b}
{c}{d}\matMMxNN{0}{1}
{0}{0} = \matMMxNN{0}{a}
{0}{c}$.\\~\\
$\matMMxNN{0}{1}
{0}{0}\matMMxNN{a}{b}
{c}{d} = \matMMxNN{c}{d}
{0}{0}$.
Equality iff $a = d$ and $c = 0$. I.e. matrices of the form
$\matMMxNN{a}{b}
{0}{a}$ (upper-triangular).
\item \red{TODO}.
Let $B = \matMMxNN{1}{0}
{0}{0}$. Then $B$ represents projection
onto the first coordinate axis.
Let $C = \matMMxNN{0}{1}
{0}{0}$. Then $C$ represents projection
onto the second coordinate axis, followed by clockwise rotation through 90 degrees.
\end{enumerate}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-8.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-9.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-10.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-11.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-1-12.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-2-1.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-2-2.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-2-3.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-2-4.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-2-5.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-2-6.png}
\end{mdframed}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-1.png}
\end{mdframed}
\begin{proof}
From (VS4), $-z$ exists, and we have $v + z + (-z) = v = v + (-z)$, which is a
contradiction if $z \neq 0_V$.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-2.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-3.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-4.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-thm-3-2.png}
\end{mdframed}
\begin{proof}
Suppose $U$ is a subspace of $V$. Then by definition of subspace
(non-emptiness) $U$ is non-empty, hence $u \in U$ exists. Also by definition
of subspace (closure under scalar multiplication) $\lambda u \in U$. In
particular, $0u = 0_V \in U$. Finally by definition of subspace (closure
under vector addition) $\lambda u + v \in U$, for all $u, v \in U$.
Conversely, suppose $0_V \in U$ and $\lambda u + v \in U$ for all
$u, v \in U$. Then $U \neq \emptyset$. Letting $\lambda = 1$ we see that
$u + v \in U$ for all $u, v \in U$, and letting $v = 0$, we see that
$\lambda u \in U$ for all $u \in U$.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-5.png}
\end{mdframed}
\begin{proof}
Suppose $U$ is a non-zero proper subspace of $\R^1$. Then
$\exists ~ u \in U$, and $\lambda u \in U$ for all $\lambda \in \R$, hence
$U = \R$.
\end{proof}
\begin{mdframed}
\includegraphics[width=350pt]{img/oxford-prelims-M1-linear-algebra-3-6.png}
\end{mdframed}
Take a circle with centre $(0, 0)$ and radius $r > 0$. For a point $v$ on the
circle, construct the line passing through $v$ and the origin. The set of
non-zero proper subspaces of $\R^2$ is the set of such lines.
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-7.png}
\end{mdframed}
\begin{proof}
$0 \in U$ since we can take all $\alpha_i = 0$.
Let $u_1, u_2 \in U$. Then $\alpha_1u_1 + u_2 \in U$ for all $\alpha_1 \in F$
by definition of $U$, since $\alpha_1u_1 + u_2 = \alpha_1 u_1 + \alpha_2 u_2$
with $\alpha_2 = 1$.
(This works even if $m = 1$ since then $u_1 = u_2$ and
$\alpha_1u_1 + u_2 = \alpha_1 u_1 + u_1 = (\alpha_1 + 1)u_1 \in U$).
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-8.png}
\end{mdframed}
\begin{enumerate}[label=(\alph*)]
\item
\begin{enumerate}[label=(\roman*)]
\item Yes. Contains $0$ and
\begin{align*}
&a_1 + \lambda a_2 + b_1 + \lambda b_2 - c_1 - \lambda c_2 - d_1 - \lambda d_2\\
=~&(a_1 + b_1) - (c_1 + d_1) + \lambda\Big((a_2 + b_2) - (c_2 + d_2)\Big)\\
=~&0.
\end{align*}
\item No. Does not contain 0.
\item No. Contains 0 but $(a_1)^2 - (b_1)^2 = (a_2)^2 - (b_2)^2 = 0 \nimplies (a_1 + a_2)^2 - (b_1 + b_2)^2 = 0$
\end{enumerate}
\item
\begin{enumerate}[label=(\roman*)]
\item Yes. Contains 0 and closed under addition and scalar multiplication.
\item No. Zero matrix not invertible.
\item No. Neither $\matMMxNN{1}{1}
{1}{1}$ nor $\matMMxNN{0}{0}
{1}{2}$ are invertible.
Yet their sum $\matMMxNN{1}{1}
{2}{3}$ is invertible.
\end{enumerate}
\end{enumerate}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-9.png}
\end{mdframed}
\begin{proof}
$0 \in U + W$ since $0 \in U$ and $0 \in W$.
Let $a \in U + W$. Then $a = u + w$ for some $u \in U, w \in W$. Therefore
$a = u + w$ for some $u, w \in V$, so $a \in V$. Therefore
$U + W \subseteq V$.
Let $u_1, u_2 \in U$ and $w_1, w_2 \in W$, so that
$(u_1 + w_1), (u_2 + w_2) \in U + W$, and let $\lambda$ be a scalar. Note
that
$$
(u_1 + w_1) + \lambda(u_2 + w_2) = (u_1 + \lambda u_2) + (w_1 + \lambda w_2) \in U + W.
$$
Therefore $U + W \subspaceeq V$ by the Subspace Test.
Regarding $U \cap V$, it contains zero and is clearly a subset of $V$. Let
$a_1, a_2 \in U \cap V$. Then $a_1, a_2 \in U$, so
$a_1 + \lambda a_2 \in U \subseteq V$ for all scalars $\lambda$. Therefore
$U \cap V \subspaceeq V$.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-10.png}
\end{mdframed}
\begin{proof}
$0 \notin U \setminus W$.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-11.png}
\end{mdframed}
\begin{proof}
First we prove that $(U \not\subseteq W$ and
$W \not\subseteq U) \implies (U \cup V) \not\subspaceeq V$.
Suppose that $U \not\subseteq W$ and $W \not\subseteq U$. Then there exists
$u \in U$, $w \in W$ such that $u \notin W$ and $w \notin U$.
Suppose $(u + w) \in U$. Then $(u + w) - u \in U$. But then $w \in U$ which
is a contradiction. Therefore $(u + w) \notin U$.
Similarly, $(u + w) \notin W$. Therefore $(u + w) \notin U \cup W$, and so
$U \cup W$ is not a subspace of $V$.
Conversely, suppose $U \subseteq W$ or $W \subseteq U$. Suppose, without loss
of generality, that $U \subseteq W$. Then $U \cup W = W \subspaceeq V$.
% Conversely, suppose that $U \cup W$ is not a subspace of $V$. It contains $0$
% and is a subset, so it must fail on closure under vector addition or scalar
% multiplication. Therefore there exists scalar $\lambda$ and
% $v_1, v_2 \in U \cup W$ such that $v_1 + \lambda v_2 \notin U \cup W$. But
% $v_1$ and $v_2$ cannot both be in $U$, since $U$ is a subspace, and for the
% same reason they cannot both be in $V$. Therefore one of $v_1, v_2$ is in
% $U \setminus W$ and the other is in $W \setminus U$. Therefore
% $U \not\subseteq W \land W \not\subseteq U$.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-12.png}
\end{mdframed}
\begin{enumerate}[label=(\alph*)]
\item Let $v_1 \in (L \cap M) + (L \cap N)$. Then $v_1 = v_2 + v_3$ where
$v_2, v_3 \in L$. Therefore $v_1 \in L$ since $L$ is a subspace. Also
$v_2 \in M$ and $v_3 \in N$, therefore $v_1 \in M + N$. Therefore
$v_1 \in L \cap (M + N)$.
\item Suppose $L =$ (line through $(1, 0)$), $M =$ (line through $(1,1)$) and
$N = $ (line through $(0, 1)$). Then $(L \cap M) + (L \cap N) = \{0\}$. But
$(M + N) = \R^2$, so $L \cap (M + N) = L \neq \{0\}$.
\item No, it's not true in general. Let $L, M, N$ be the lines in $\R^2$
defined in (b) above. Then $L + (M \cap N) = L$. But
$(L + M) \cap (L + N) = \R^2 \cap \R^2 = \R^2 \neq L$.
\end{enumerate}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-13.png}
\end{mdframed}
\begin{proof}
Let $U$ be the set of all sequences described. Then $U$ contains the zero
sequence $(0, 0, \ldots)$. Let $(u_n) \in U$ and $(v_n) \in U$ and let
$(w_n) = (u_n) + \lambda(v_n)$. Then
\begin{align*}
w_{n+1} &= u_{n+1} + \lambda v_{n+1}\\
&= (u_n + u_{n-1}) + \lambda (v_n + v_{n-1})\\
&= (u_n + \lambda v_n) + (u_{n-1} + \lambda v_{n-1})\\
&= w_n + w_{n-1}.
\end{align*}
So $(w_n) \in U$. Therefore $U$ is a subspace by the subspace test.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-14.png}
\end{mdframed}
\begin{proof}
Let $U$ be the set of all sequences described. Then $U$ contains the zero
sequence $(0, 0, \ldots)$. Let $(u_n) \in U$ and $(v_n) \in U$ and let
$(w_n) = (u_n) + \lambda(v_n)$. Then
\begin{align*}
% w_{n+p} + \alpha_1w_{n + p - 1} + \cdots + \alpha_pw_n
% &=
w_{n+p} + \sum_{i=1}^{p} \alpha_i w_{n+p-i}
&= (u_{n+p} + \lambda v_{n+p}) + \sum_{i=1}^{p} \alpha_i (u_{n+p-i} + \lambda v_{n+p-i})\\
&= (u_{n+p} + \sum_{i=1}^{p} \alpha_i u_{n+p-i}) +
\lambda (v_{n+p} + \sum_{i=1}^{p} \alpha_i v_{n+p-i})\\
&= 0 + \lambda \cdot 0 = 0.
\end{align*}
So $(w_n) \in U$. Therefore $U$ is a subspace by the subspace test.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-linear-algebra-3-15.png}
\end{mdframed}
\begin{proof}
\end{proof}
\section{2017}
\subsection*{} % 1
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-1-1.png}
\end{mdframed}
\subsubsection*{(i)}
\begin{definition*}[Linear independence]
Let $a_1, \ldots, a_n \in \R$. Then $v_1, v_2, \ldots, v_n$ are linearly
independent if and only if the only solution to $\sum_{i=1}^n a_iv_i = 0$ is
$a_1 = a_2 = \ldots = a_n = 0$.
\end{definition*}
\begin{definition*}[Span]
$v_1, v_2, \ldots, v_n$ span $V$ if and only if for all $w \in V$ there exist
$a_1, \ldots, a_n \in \R$ such that $\sum_{i=1}^n a_iv_i = w$.
\end{definition*}
\begin{definition*}[Basis]
$v_1, v_2, \ldots, v_n$ are a basis for $V$ if and only if they span $V$ and
they are linearly independent.
\end{definition*}
\subsubsection*{}
\begin{mdframed}
\includegraphics[width=250pt]{img/oxford-prelims-2017-A-1-1-2.png}
\end{mdframed}
\newpage
\begin{theorem*}[Steinitz Exchange Lemma - version 1]
Let $X$ be a subset of a vector space $V$. Let $u \in \Span X$. Let $v \in X$
be such that $u \notin \Span\(X \setminus \{v\}\)$. Then
$\Span\(\(X \setminus \{v\}\) \cup \{u\}\) = \Span X$.
\end{theorem*}
[Informally: Take a set of vectors, one of which is $v$. Suppose their span
contains $u$, but, after removing $v$, their span no longer contains $u$. Now
consider the set resulting after exchanging $u$ for $v$. The span of this set
is the same as that of the original.]
\begin{proof}~\\
Let $X$ be $\{v_1, \ldots, v_n\}$, and let $u \in \Span X$.
Reorder the $v_i$ such that $u \notin \Span\(v_2, \ldots, v_n\)$.
Note that $u = \sum_{i=1}^n\gamma_iv_i$ for some
$\gamma_1, \ldots, \gamma_n \in \R$, where $\gamma_1 \neq 0$.
Therefore $v_1 = \frac{1}{\gamma_1}\(u - \sum_{i=2}^n\gamma_iv_i\)$.
So we have $u \in \Span\(v_1, \ldots, v_n\)$ and
$v_1 \in \Span\(u, v_2, \ldots, v_n\)$.
It is clear\footnote{
For the forwards direction, let $w$ be in $\Span\(u, v_2, \ldots,
v_n\)$. We have $w = au + \sum_{i=2}^n\lambda_iv_i$ for some
$a, \lambda_2, \ldots, \lambda_n \in \R$, and therefore
$$
w = a\sum_{i=1}^n\gamma_iv_i + \sum_{i=2}^n\lambda_iv_i
= a\gamma_1v_1 + \sum_{i=2}^n(\gamma_i + \lambda_i)v_i,
$$
proving that $w \in \Span\(v_1, \ldots, v_n\)$, as required. For the
reverse direction, let $w$ be in $\Span~ \{v_1, \ldots, v_n\}$. We have
$w = \sum_{i=1}^n\lambda_iv_i$ for some
$a, \lambda_2, \ldots, \lambda_n \in \R$, and therefore
$$
w = \frac{\lambda_1}{\gamma_1}\(u - \sum_{i=2}^n\gamma_iv_i\) + \sum_{i=2}^n\lambda_iv_i
= \frac{\lambda_1}{\gamma_1}u + \sum_{i=2}^n(\lambda_i - \gamma_i)v_i,
$$
proving that $w \in \Span\(u, v_2, \ldots, v_n\)$, as required. } that any
vector in $\Span\(u, v_2, \ldots, v_n\)$ can be rewritten as a linear
combination of $v_1, \ldots, v_n$, and conversely that any vector in
$\Span\(v_1, \ldots, v_n\)$ can be rewritten as a linear combination of
$u, v_2, \ldots, v_n$.
\end{proof}
\newpage
\begin{theorem*}
A linearly independent set can be no larger than a spanning set.
\end{theorem*}
\begin{proof}
Let $V$ be a vector space.
Let $S = u_1, \ldots, u_m$ be linearly independent vectors in $V$.
Let $T = v_1, \ldots, v_n$ span $V$.
The argument involves repeatedly substituting members of the two sets so that
after $m$ steps, $m$ members of $T$ have been removed, each time being
replaced by a member of $S$.
Therefore $m \leq n$, i.e. a linearly independent set can be no larger than a
spanning set.
\end{proof}
\begin{theorem*}
Every basis has the same size.
\end{theorem*}
\begin{theorem*}
A spanning set that is the same size as a basis is also a basis.
\end{theorem*}
\newpage
\subsubsection*{}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-1-1-3.png}
\end{mdframed}
\begin{proof}~\\
$\implies$\\
For the forward implication, suppose that $v_1, \ldots, v_n$ is a basis of $V$.
Then for all $w \in V$ there exist unique coordinates $\lambda_1, \ldots, \lambda_n$ such that
\begin{align*}
\sum_{i=1}^n \lambda_iv_i &= w.
\end{align*}
Subtracting $\(\sum_{i=1}^n \lambda_i\)v_1$ from both sides we have
\begin{align*}
\sum_{i=1}^n \lambda_i(v_i - v_1) &= w - \(\sum_{i=1}^n \lambda_i\)v_1\\
\(\sum_{i=1}^n \lambda_i\)v_1 + \sum_{i=2}^n \lambda_i(v_i - v_1) &= w,
\end{align*}
proving that $v_1, v_2 - v_1, \ldots, v_n - v_1$ spans $V$.
Furthermore, $v_1, v_2 - v_1, \ldots, v_n - v_1$ are linearly independent,
since a corollary of the Steinitz Exchange Lemma is that if a spanning set is
the same size as a linearly independent set, then the spanning set is also
linearly independent (and the linearly independent set spans, so in fact both
are bases).
$\impliedby$\\
For the reverse implication, suppose that $v_1, v_2 - v_1, \ldots, v_n - v_1$
is a basis of $V$.
Then for all $w \in V$ there exist unique coordinates $\lambda_1, \ldots, \lambda_n$ such that
\begin{align*}
\lambda_1v_1 + \sum_{i=2}^n \lambda_i(v_i - v_1) = w.
\end{align*}
Equivalently,
\begin{align*}
\Big(\lambda_1 - \sum_{i=2}^n\lambda_i\Big)v_1 + \sum_{i=2}^n \lambda_iv_i = w,
\end{align*}
proving that $v_1, v_2, \ldots, v_n$ span $V$.
Furthermore, $v_1, v_2, \ldots, v_n$ are linearly independent, by the same
Steinitz Exchange Lemma argument given above.
\end{proof}
~\\
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-1-2.png}
\end{mdframed}
\renewcommand{\cvec}[2]{\begin{pmatrix}#1\\#2\end{pmatrix}}
\begin{proof}
For the forwards implication, suppose for a contradiction that $\cvec{a}{b}$
and $\cvec{c}{d}$ are linearly independent and $ad - bc = 0$.
Note that $d\cvec{a}{b} - b\cvec{c}{d} = \cvec{0}{0}$. But this contradicts
linear independence, since if $b = d = 0$ then $\cvec{a}{b} = \cvec{a}{0}$
and $\cvec{c}{d} = \cvec{c}{0}$ are linearly dependent.
Therefore linear independence implies $ad - bc \neq 0$.
For the reverse implication, suppose for a contradiction that $\cvec{a}{b}$
and $\cvec{c}{d}$ are linearly dependent and $ad - bc \neq 0$.
Note that $\cvec{c}{d} = \lambda \cvec{a}{b}$ for some $\lambda \in \R$.
% Consider $\lambda_1\cvec{a}{b} + \lambda_2 \cvec{c}{d} = \cvec{0}{0}$.
Therefore $d\cvec{a}{b} - b\cvec{c}{d} = d\cvec{a}{b} - b\lambda\cvec{a}{b}$,
giving the following system of equations:
\begin{align*}
\begin{cases}
ab\lambda &= bc\\
bd &= b^2\lambda.
\end{cases}
\end{align*}
Suppose that $b \neq 0$. Then $d = b\lambda$, hence $ad = bc$, a contradiction.
Alternatively, suppose $b = 0$. Then in order for $\cvec{a}{b} = \cvec{a}{0}$
and $\cvec{c}{d}$ to be linearly dependent, we must have $d = 0$ (OK?). In
which case $ad - bc = 0$, a contradiction again.
Therefore $ad - bc \neq 0$ implies linear independence.
\end{proof}
\newpage
\begin{proof}
Let $x_1 = \cvec{a}{b}$ and $x_2 = \cvec{c}{d}$
We prove the negation; that $x_1, x_2$ linearly dependent is equivalent to
$ad - bc = 0$.
$\implies$\\
For the forwards implication, we prove that $x_1, x_2$ linearly dependent
implies $ad - bc = 0$.
Since they are linearly dependent, there exists $\lambda_1, \lambda_2 \in \R$
such that $\lambda_1x_1 + \lambda_2x_2 = 0$, with at least one of
$\lambda_1, \lambda_2$ non-zero.
Suppose, without loss of generality, that $\lambda_1 = 0$. Then
$\lambda_2 \neq 0$ and therefore $c = d = 0$, and therefore $ad - bc = 0$.
The remaining case is that $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$. Then
\begin{align*}
\begin{cases}
a\lambda_1 + c\lambda_2 = 0\\
b\lambda_1 + d\lambda_2 = 0,
\end{cases}
\end{align*}
therefore
\begin{align*}
\lambda_1 &= -\frac{c}{a}\lambda_2\\
\Big(-\frac{bc}{a} + d\Big)\lambda_2 &= 0\\
ad - bc &= 0.
\end{align*}
$\impliedby$\\
For the reverse implication, we prove that $ad - bc = 0$ implies $x_1, x_2$
linearly dependent.
\red{TODO: Not sure how to do this without resorting to properties of
determinant of linear transformation.}
Let $u_1, u_2$ be a basis for $\R^2$ and consider the matrix
$\matMMxNN{a}{c} {b}{d}$ with respect to this basis.
Viewed as a linear transformation, the matrix sends $u_1 \mapsto x_1$ and
$u_2 \mapsto x_2$.
The determinant of this matrix is $ad - bc$. Since the determinant is zero, the
linear transformation maps the basis vectors into a one- or zero-dimensional
subspace.
Therefore $x_1,x_2$ lie in a one dimensional subspace. Therefore
$x_1 = \lambda x_2$ for some $\lambda \in \R$. Therefore $x_1,x_2$ are linearly
dependent.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-1-3.png}
\end{mdframed}
To be a basis they must be linearly independent, and must span $\R^3$.
Since there are 3 of them, if they are linearly independent, then they span (by
Steinitz exchange lemma).
Suppose
\begin{align*}
\begin{cases}
\lambda_1 + \lambda_2 + \lambda_3 &= 0\\
\lambda_2\alpha + \lambda_3\beta &= 0\\
\lambda_2\alpha^2 + \lambda_3\beta^2 &= 0
\end{cases}
\end{align*}
has a solution other than $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Then either
$\lambda_2 \neq 0$ or $\lambda_3 \neq 0$. Suppose that $\lambda_2 \neq 0$. Then
$\alpha = -\frac{\lambda_3}{\lambda_2}\beta$. Therefore
\begin{align*}
\frac{\lambda_3^2}{\lambda_2}\beta^2 + \lambda_3\beta^2 &= 0\\
\beta^2\(\frac{\lambda_3^2}{\lambda_2} + \lambda_3\) &= 0\\
\end{align*}
\red{TODO}
\subsection*{} % 2
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-2-1.png}
\end{mdframed}
\subsection*{} % 2.a.i
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-2-1-1.png}
\end{mdframed}
By definition, $\Im T_A = \{Ax: x \in \R^m\}$.
Let $S$ denote the proposition ``$Ax = b$ has a solution''.
By the definition of ``has a solution'', $S$ is equivalent to the proposition
``there exists $x \in \R^m$ such that $Ax = b$''.
We see that $S \implies b \in \Im T_A$, and also that $b \in \Im T_A \implies S$.
\subsubsection*{} % 2.a.ii
\begin{mdframed}
\includegraphics[width=350pt]{img/oxford-prelims-2017-A-2-1-2.png}
\end{mdframed}
Let $S_u$ denote the proposition ``$Ax = b$ has a unique solution''.
First we prove the forwards implication:
\begin{claim*}
$S_u \implies \Big(b \in \Im T_A ~~\text{and}~~ \ker T_A = \{0\}\Big)$.
\end{claim*}
\begin{proof}
Firstly, since $S_u \implies S$, we know from part (i) that
$S_u \implies b \in \Im T_A$.
Suppose $S_u$ is true and let $x$ be the unique solution.
We know that $0 \in \ker A$ since $A(0) = A(x - x) = Ax - Ax = 0$ by the
linearity of $A$.
Now suppose there exists $y \neq 0 \in \ker T_A$. But
\begin{align*}
A(x + y) = Ax + Ay = b + 0 = b,
\end{align*}
so $x + y \neq x$ is also a solution; a contradiction. Therefore no such $y$
exists and we see that $S_u \implies \ker T_A = \{0\}$.
\end{proof}
Now we prove the reverse implication:
\begin{claim*}
$\Big(b \in \Im T_A ~~\text{and}~~ \ker T_A = \{0\}\Big) \implies S_u$.
\end{claim*}
\begin{proof}
Suppose $b \in \Im T_A$. Then we know from part (i) that $S$ is true. So let
$x$ be a solution.
Now suppose that $\ker T_A = \{0\}$ and that $y \neq x$ is another solution. But then
\begin{align*}
A(x - y) = Ax - Ay = b - b = 0,
\end{align*}
so $x - y \neq 0 \in \ker T_A$; a contradiction. Therefore if $\ker T_A = \{0\}$
then no such $y$ exists.
\end{proof}
\subsubsection*{} % 2.a.iii
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-2-1-3.png}
\end{mdframed}
Suppose $Ax = b$ has $n > 1$ solutions and let the first two such solutions be
$x_1$ and $x_2$. Then there are uncountably infinitely many solutions, since
for all $\alpha \in \R$
\begin{align*}
A\Big(x_1 + \alpha (x_2 - x_1)\Big) = Ax_1 + \alpha(Ax_2 - Ax_1) = b + \alpha(b - b) = b.
\end{align*}
\newpage
\subsection*{} % 2.b
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-2-2-0.png}\\
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-2-2.png}
\end{mdframed}
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
$ $ & $\Im < \Cod$ & $\Im = \Cod$ & $\Im > \Cod$\\
\hline
$\Dom < \Im$ & Impossible & Impossible & Impossible \\
$\Dom = \Im$ & 0 or 1 (A) & 1 (B) & Impossible \\
$\Dom > \Im$ & 0 or $\infty$ (C) & $\infty$ (D) & Impossible \\
\end{tabular}
\end{table}
\textbf{(i)} $m < n$. \textbf{No}: case A or C.
% We have $\dim(\Dom T_A) < \dim(\Cod T_A)$. It is possible that
% $\dim(\Dom T_A) \leq \dim(\Im T_A)$ in which case there will not be infinitely
% many solutions.
\textbf{(ii)} $m = n$ and $\vec b = \vec 0$. \textbf{No}: case B or C.
% We know that $\vec b \in \Im T_A$, since $\vec b = \vec 0$. However, it is
% possible that $A$ is invertible. In that case there will be exactly one
% solution for all $b$. (Otherwise, there are infinitely many solutions.)
\textbf{(iii)} $m > n$. \textbf{No}: case A, C or D
% It is possible that $\dim(\Im T_A) < n$, in which case it is possible that
% $b \notin \Im T_A$, in which case there are zero solutions. (But if
% $b \in \Im T_A$ then there are infinitely many solutions.)
\textbf{(iv)} $m > n$ and $T_A$ is onto. \textbf{Yes}: case D
\begin{lemma*}
$Ax = b$ has infinitely many solutions for all $b \in \Cod T_A$ if and only
if $\dim(\Dom T_A) > \dim(\Im T_A)$
\end{lemma*}
[Either the map is from a higher dimensional space to a lower dimensional
space, or the image is a lower dimensional subspace.]
\subsection*{} % 2.c
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-2-3.png}
\end{mdframed}
Could be case B (1 solution) or C (infinite solutions).
\textbf{(i)} Impossible
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-3-1.png}
\end{mdframed}
\includegraphics[width=300pt]{img/oxford-prelims-2017-A-3-diagram.png}
\begin{definition*}
The pre-image of $X$ is $T^\1(X) := \{u ~|~ T(u) \in X\}$.
\end{definition*}
\begin{claim*}
$T^\1(X)$ is a subspace of $U$ that contains $\Ker T$.
\end{claim*}
\begin{proof}
Note that $0_V \in X$, since $X$ is a subspace of $V$. Therefore
$\Ker T \subseteq T^\1(X)$.
To show that $T^\1(X)$ is a subspace of $U$ we must show that it is a subset
of $U$, that it contains the zero vector, and that it is closed under taking
linear combinations.
$T^\1(X)$ is a subset of $U$ by definition of pre-image.
$T$ is linear, therefore $T(0_U) = 0_V$, therefore $0_U \in T^\1(X)$.
Let $u_1, \ldots, u_n \in T^\1(X)$ and for $i=1,\ldots, n$ let
$x_i = T(u_i)$. Consider the linear combination $\sumin \lambda_iu_i$ for
scalars $\lambda_i$. We have
$T\Big(\sumin \lambda_iu_i\Big) = \sumin \lambda_ix_i \in X$ by the linearity
of $T$ and by the fact that $X$ is a subspace. Therefore $T^\1(X)$ is closed
under taking linear combinations.
\end{proof}
\newpage
\begin{claim*}
$\dim T^\1(X) = \dim\(X \cap \Im T\) + n_T$
\end{claim*}
\begin{lemma}\label{subspace-basis-extension}
Let $U$ be a subspace of a finite-dimensional vector space $V$. Then every
basis of $U$ can be extended to be a basis of $V$. I.e. if $v_1, \ldots, v_m$
is a basis for $U$, then there exists a basis
$v_1, \ldots, v_m, v_{m+1}, \ldots, v_n$ of $V$.
\end{lemma}
\begin{lemma}\label{transformed-basis-spans-image}
Let $U, V$ be vector spaces, let $u_1, \ldots, u_n$ span $U$ and let
$T:U \to V$ be a linear transformation. Then $T(u_1), \ldots, T(u_n)$ spans
$V$.
\end{lemma}
\begin{proof}
Let $T^*: \(T^\1(X)\) \to \(X \cap \Im T\)$ be the restriction of $T$ to $T^\1(X)$.
From above we have $\Ker T \subseteq T^\1(X)$, therefore $\Ker T = \Ker T^*$
and $n_T = n_{T^*}$.
Choose a basis $u_1, \ldots, u_{n_T}$ for $\Ker T^*$ and let
$n = \dim T^\1(X)$.
From Lemma \ref{subspace-basis-extension}, this basis can be extended to a
basis $u_1, \ldots, u_{n_T}, u_{n_T+1}, \ldots, u_n$ of $T^\1(X)$.
From Lemma \ref{transformed-basis-spans-image},
$T^*(u_1), \ldots, T^*(u_{n_T}), T^*(u_{n_T+1}), \ldots, T^*(u_n)$ spans
$\Im T^*$.
Moreover, $T^*(u_{n_T+1}), \ldots, T^*(u_n)$ spans $\Im T^*$, since
$T^*(u_1) = \ldots = T^*(u_{n_T}) = 0_V$.
Suppose that $T^*(u_{n_T+1}), \ldots, T^*(u_n)$ are linearly independent.
Then they are a basis for $\Im T^*$ and we have
$r_{T^*} := \dim(\Im T^*) = n - n_T$.
Note that $\Im T^* = X \cap \Im T$, and recall that $n := \dim T^\1(X)$.
So we have $\dim T^\1(X) = \dim\(X \cap \Im T\) + n_T$ as required.
It remains to show that $T^*(u_{n_T+1}), \ldots, T^*(u_{n_T+r_{T^*}})$ are linearly
independent.
% Rename and relabel these as follows: for $i = 1, \ldots, r_{T^*}$, let
% $x_i = u_{n_T + i}$.
Consider an arbitrary linear dependence relation
$\sum_{i=1}^{r_{T^*}} \lambda_iT^*(u_{n_T + i}) = 0_V$, for some scalars
$\lambda_i, \ldots, \lambda_{r_{T^*}}$
Since $T^*$ is linear, we have
$T^*\Big(\sum_{i=1}^{r_{T^*}} \lambda_i(u_{n_T + i})\Big) = 0_V$ and hence
$\sum_{i=1}^{r_{T^*}} \lambda_iu_{n_T+i} \in \Ker T^*$.
Therefore, using the basis for $\Ker T^*$, we have
$\sum_{i=1}^{r_{T^*}} \lambda_iu_{n_T+i} = \sum_{i=1}^{n_T} \gamma_iu_i$, for
some scalars $\gamma_i, \ldots, \gamma_{r_{T^*}}$.
Therefore $\sum_{i=1}^{n_T+r_{T^*}}\beta_iu_i = 0$, where each $\beta_i$ is
either $\lambda_i$ or $-\gamma_i$. But since the $u_i$ are a basis of
$T^\1(X)$ they are linearly independent, hence all the $\beta_i$ are zero,
and so $\lambda_i = 0$ for all $i \in \{1, \ldots, r_{T^*}\}$.
Therefore $T^*(u_{n_T+1}), \ldots, T^*(u_{n_T+r_{T^*}})$ are linearly
independent.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-3-0.png}\\
\includegraphics[width=400pt]{img/oxford-prelims-2017-A-3-2.png}
\end{mdframed}
% $\Im ST := \{w ~|~ \exists u: S(T(u)) = w\}$
% $\Im S' := \{w ~|~ \exists v \in \Im T: S(v) = w\}$
\textbf{(i)}
\begin{claim*}
$\Im ST = \Im S'$.
\end{claim*}
\begin{proof}
For the forwards direction, let $w \in \Im ST$. Then $\exists u \in U$ such
that $S(T(u)) = w$. Since $T(u) \in \Im T$, we have $\exists v \in \Im T$
such that $S(v) = w$. Therefore $w \in \Im S'$.
For the reverse direction, let $w \in \Im S'$. Then $\exists v \in \Im T$ such
that $S(v) = w$. Therefore $\exists u \in U$ such that $S(T(u)) = w$. Therefore
$w \in \Im ST$.
\end{proof}
\begin{claim*}
$r_{ST} \leq \min\(r_S, r_T\)$.
\end{claim*}
\begin{proof}
$\Im S'$ is a subspace of $\Im S$\footnote{
$\Im S'$ is a subset of $\Im S$ and contains $0_W$. Consider
$\sumin \lambda_iw_i$ for $w_i \in \Im S'$ and scalars $\lambda_i$. For
each $w_i$ let $u_i \in \Im T$ be such that $S(u_i) = w_i$. Then
$\Big(\sumin \lambda_i u_i\Big) \in \Im T$ and
$\sumin \lambda_i w_i = \sumin \lambda_i S(u_i) = S\Big(\sumin \lambda_i
u_i\Big)$. Therefore $\Im S'$ is a subspace of $\Im S$.
}, therefore $r_{S'} \leq r_S$ by Lemma \ref{subspace-basis-extension}. Since
$\Im S' = \Im ST$, we have $r_{ST} \leq r_S$.
Let $v_1, \ldots, v_{r_T}$ be a basis for $\Im T$. From Lemma
\ref{transformed-basis-spans-image} we have $S(v_1), \ldots, S(v_{r_T})$ span
$\Im S' = \Im ST$. Therefore $r_{ST} \leq r_T$.
Therefore $r_{ST} \leq \min\(r_S, r_T\)$.
\end{proof}
\textbf{(ii)}
\begin{claim*}
$\Ker ST = T^\1\(\Ker S'\)$
\end{claim*}
\begin{proof}~\\
$u \in \Ker ST \iff S'(T(u)) = 0_W \iff T(u) \in \Ker S' \iff u \in T^\1\(\Ker S'\)$.
\end{proof}
\newpage
\begin{claim*}
$n_{ST} = n_{S'} + n_T \leq n_S + n_T$.
\end{claim*}
\begin{proof}
Note that $\Ker T$ is a subspace of $\Ker ST$.
Let $u_1, \ldots, u_{n_T}$ be a basis for $\Ker T$.
By Lemma \ref{subspace-basis-extension}, this can be extended to a basis
$u_1, \ldots, u_{n_T}, u_{n_T + 1}, \ldots, u_{n_{ST}}$ of
$\Ker ST = T^\1\(\Ker S'\)$.
By Lemma \ref{transformed-basis-spans-image},
$T(u_1), \ldots, T(u_{n_T}), T(u_{n_T + 1}), \ldots, T(u_{n_{ST}})$ spans
$\Ker S'$.
However $T(u_1) = T(u_2) = \ldots = T(u_{n_T}) = 0_V$, therefore
$T(u_{n_T + 1}), \ldots, T(u_{n_{ST}})$ also spans $\Ker S'$.
Therefore $n_{S'} \leq n_{ST} - n_T$.
In order to prove that this is an equality, we need to show that
$T(u_{n_T + 1}), \ldots, T(u_{n_{ST}})$ are linearly independent. This
argument procedes in the usual manner:
Suppose there exist scalars $\lambda_{n_T+1}, \ldots, \lambda_{n_{ST}}$ such
that $\sum_{i=n_T+1}^{n_{ST}} \lambda_i T(u_{i}) = 0_V$. Since $T$ is linear
we have $T\Big(\sum_{i=n_T+1}^{n_{ST}} \lambda_i u_{i}\Big) = 0_V$, therefore
$\Big(\sum_{i=n_T+1}^{n_{ST}} \lambda_i u_{i}\Big) \in \Ker T$.
Using our basis for $\Ker T$, we have that there exist scalars
$\gamma_i, \ldots, \gamma_{n_T}$ such that
$\sum_{i=n_T+1}^{n_{ST}} \lambda_i u_{i} = \sum_{i=1}^{n_T} \gamma_i u_i$. In
other words, $\sum_{i=1}^{n_{ST}} \beta_i u_i = 0_U$, where
$\beta_i = \gamma_i$ if $i < n_T$, otherwise $\beta_i = \lambda_i$.
But $u_1, \ldots, u_{n_{ST}}$ are linearly independent. So we see that
\begin{align*}
\sum_{i=n_T+1}^{n_{ST}} \lambda_i T(u_{i}) = 0_V
\implies
\lambda_{n_T+1} = \lambda_{n_T+2} = \ldots = \lambda_{n_{ST}} = 0.
\end{align*}
So $T(u_{n_T + 1}), \ldots, T(u_{n_{ST}})$ are linearly independent, and
therefore are a basis for $\Ker S'$.
Therefore $n_{S'} = n_{ST} - n_T$, or equivalently, $n_{ST} = n_{S'} + n_T$,
as required.