-
Notifications
You must be signed in to change notification settings - Fork 2
/
calculus--callahan--advanced-calculus.tex
55 lines (48 loc) · 1.72 KB
/
calculus--callahan--advanced-calculus.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
\section{Callahan - Advanced calculus: a geometric view}
\begin{enumerate}
\item
Recall that $\dds \tan s = \sec^2 s = 1 + \tan^2 s$.
Let $x = \tan s$. Then $\dx = \sec^2 s \ds$, and
\begin{align*}
\int \frac{\dx}{1 + x^2}
= \int \frac{\sec^2 s \ds}{\sec^2 s}
= \int \ds
= s + C
= \arctan x + C.
\end{align*}
This is an example of using a pullback substitution to find an antiderivative.
We can use the antiderivative to evaluate some definite integrals:
\begin{align*}
\int_0^\infty \frac{\dx}{1 + x^2}
&= \lim_{b\to\infty}\Big[\arctan x\Big]_0^b
= \frac{\pi}{2},\\
\int_{-\infty}^1 \frac{\dx}{1 + x^2}
&= \lim_{a\to-\infty}\Big[\arctan x\Big]_a^1
= -\frac{\pi}{2} - \frac{\pi}{4} = -\frac{3}{4}.
\end{align*}
\item
Let $u = 1 + x^2$. Then $\du = 2x \dx$, and
\begin{align*}
\int \frac{x \dx}{1 + x^2}
&= \int \frac{x \frac{\du}{2x}}{u}
= \frac{1}{2} \int \frac{\du}{u}
= \frac{1}{2} \ln(1 + x^2) + C.
\end{align*}
This is an example of a pushforward substitution.
\item~\\
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/calculus--callahan--advanced-calculus-1-3.png}
\end{mdframed}
Note that $(R\cos\theta)^2 + (R\sin\theta)^2 = R^2$.
Let $x = R\cos\theta$. This is a pullback substitution.
Then $\dx = -R\sin\theta\d\theta$, and
\begin{align*}
\int_{-R}^R\sqrt{R^2 - x^2}\dx
&= -R \int_{\theta=\arccos(-1)}^{\theta=\arccos(1)}\sqrt{R^2 - R^2\cos^2\theta}~\sin\theta\d\theta\\
&= -R^2 \int_\pi^0\sin^2\theta\d\theta\\
&= -\frac{R^2}{2} \int_\pi^0(1 - \cos 2\theta)\d\theta\\
&= -\frac{R^2}{2} \Big[\theta - \frac{1}{2}\sin 2\theta\Big]_\pi^0\\
&= \frac{\pi R^2}{2}.
\end{align*}
\end{enumerate}