-
Notifications
You must be signed in to change notification settings - Fork 2
/
calculus--berkeley-math53-multivariable-calculus.tex
1016 lines (853 loc) · 32.2 KB
/
calculus--berkeley-math53-multivariable-calculus.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\newpage
\section{Math 1A Final (Adiredja)}
\subsection*{1.c}
\begin{mdframed}
In order to find the maximum, we want the derivative of
\begin{align*}
f(x) = \int_0^x t^2 - 1 \dt.
\end{align*}
We could integrate it explicitly:
\begin{align*}
f(x) = \left[\frac{t^3}{3} - t \right]_0^x = \frac{x^3}{3} - x.
\end{align*}
So this is a function telling us the area under the curve for a given $x$. Now
we want the maximum of this function, so we have to differentiate:
\begin{align*}
\ddx \( \frac{x^3}{3} - x \) = x^2 - 1 = (x+1)(x-1)
\end{align*}
But, ``of course'', this was obvious from FTC.
And that is zero at -1, and 1. But at 1, it's a minimum, not a maximum.
\end{mdframed}
\newpage
\subsection*{3.b}
$\lim_{x\to 2} x^2$ is obviously 4. Prove it.\\
\begin{mdframed}
We want a procedure that, given a distance $\epsilon$ in the output space,
shows how to pick a distance $\delta$ in the input space. The $\delta$ must satisfy the following:
For any $x$ within the radius of $\delta$ in the input space, $x^2$ will be
within the radius of $\epsilon$ in the output space.
\textbf{Guess}\\
First we try to ``guess'' a rule giving a $\delta$ in terms of the $\epsilon$.
If it is true that $x^2$ is within the radius of $\epsilon$, then that's the
same as saying
\begin{align*}
|x^2 - 4| < \epsilon\\
x^2 < \epsilon + 4\\
x < \sqrt{\epsilon + 4}\\
\end{align*}
Now, we're trying to make a statement about the size of the window in the
input space. The distance from the point of interest is $x - 2$, and so we
know that
\begin{align*}
x - 2 < \sqrt{\epsilon + 4} - 2.
\end{align*}
So that suggests that the following rule will give a $\delta$ satisfying the
requirement:
Choose $\delta = \sqrt{\epsilon + 4} - 2$.
\textbf{Prove}\\
We know that $2 \pm \delta$ gets mapped onto the boundary of the output
window (because we chose $\delta$ to have that property).
Now, we need to prove that it is true that any $x$ within that input window
will be mapped into the output window.
Consider some $x$ in the input window. Where does it get mapped to? Answer:
$x^2$. Also, we know that $x^2 < (2 + \delta)^2$ (because $2+\delta$ is at
the outer edge of our input window). And, we've \textit{chosen} a value for
$\delta$: it's $\sqrt{\epsilon + 4} - 2$. So we can write the following
inequality:
\begin{align*}
x^2 < (2 + \sqrt{\epsilon + 4} - 2)^2
\end{align*}
Recall that what we're trying to show is that this $x$ (which was chosen to
be in the \textit{interior} of our input window) gets mapped into the
\textit{interior} of the output window.
Simplifying our inequality:
\begin{align*}
x^2 < (2 + \sqrt{\epsilon + 4} - 2)^2\\
x^2 < (\sqrt{\epsilon + 4})^2\\
x^2 < 4 + \epsilon \qed
\end{align*}
And that proved it: $f(x) = x^2$ is less than $\epsilon$ from the hypothesized limit, 4.
Well, that isn't valid. See\\
\url{https://www.youtube.com/watch?v=gLpQgWWXgMM}\\
for the correct proof, and also\\
\url{https://math.stackexchange.com/questions/330297/prove-that-lim-x-to-2x2-4-using-epsilon-delta-definition}
\url{https://math.stackexchange.com/questions/1344493/epsilon-delta-proof-of-lim-x-to-2-x2-4}
\begin{align*}
\end{align*}
\end{mdframed}
\newpage
\subsubsection*{b}
Using definition of definite integral (as limit of Riemann sums).
This example illustrates aspects of the Fundamental Theorem of Calculus: that
using antiderivatives to evaluate a definite integral gives the same result as
computing the limit of the Riemann sums directly.
\begin{mdframed}
\begin{align*}
\int_0^2 (2 - x^2) \dx
&= \lim_{N \to \infty}\sum_{i=1}^N \frac{2}{N}\(2 - \(\frac{2i}{N}\)^2\) \\
&= \lim_{N \to \infty}\sum_{i=1}^N \frac{4}{N} - \frac{8i^2}{N^3} \\
&= \lim_{N \to \infty}\(4 - \frac{8}{N^3}\sum_{i=1}^Ni^2 \)\\
&= \lim_{N \to \infty}\(4 - \frac{8}{N^3}\frac{N(N+1)(2N+1)}{6} \)\\
&= \lim_{N \to \infty}\(4 - 8\frac{(N+1)(2N+1)}{6N^2} \)\\
&= \lim_{N \to \infty}\(4 - 8\frac{2 + 3N^{-1} + N^{-2}}{6} \)\\
&= 4 - \frac{8}{3} = \frac{4}{3}\\
\end{align*}
Alternatively,
\begin{align*}
\int_0^2 (2 - x^2) \dx
&= \left[2x - \frac{x^3}{3}\right]_0^2 \\
&= 4 - \frac{8}{3} = \frac{4}{3} \qed
\end{align*}
\end{mdframed}
\section{Math 53 2017 Frenkel - Homework}
\subsection*{10.2.30}
Find equations of the tangents to the curve $x = 3t^2 + 1$, $y = 2t^3 + 1$,
that pass through the point $(4, 3)$.
~\\
\begin{mdframed}
We seek points $(x_0, y_0)$ on the curve at which the tangent intersects
$(4, 3)$. Such points satisfy both the linear tangent equation, and the
Cartesian equation for the curve:
\begin{align*}
\begin{cases}
y_0 = 4 + (x_0 - 3)\frac{\dy}{\dx}(x_0)\\
y_0 = 2\(\frac{x_0-1}{3}\)^{3/2} + 1.
\end{cases}
\end{align*}
The derivative is $\dydx = (x - 1)^{1/2}$, so $x_0$ satisfies
\begin{align*}
\frac{2}{3^{3/2}}(x_0 - 1)^{3/2} - (x_0 - 3)(x_0 - 1)^{1/2} - 3 = 0.
\end{align*}
Letting $A = x_0 - 1$,
\begin{align*}
\frac{2}{3^{3/2}}A^{3/2} - (A - 2)A^{1/2} - 3 = 0.
\end{align*}
Letting $B = A^{1/2}$,
\begin{align*}
\frac{2}{3^{3/2}}B^3 - (B^2 - 2)B - 3 = 0 \\
\(\frac{2}{3^{3/2}} - 1\)B^3 + 2B - 3 = 0 \\
\end{align*}
But this doesn't seem to have a simple solution.
\begin{verbatim}
In [80]: sp.solve(Eq(c * B**3 + 2*B - 3, 0), B)
Out[80]:
[-(-1/2 - sqrt(3)*I/2)*(sqrt(6561/c**2 + 864/c**3)/2 - 81/(2*c))**(1/3)/3 + 2/(c*(-1/2 - sqrt(3)*I/2)*(sqrt(6561/c**2 + 864/c**3)/2 - 81/(2*c))**(1/3)),
-(-1/2 + sqrt(3)*I/2)*(sqrt(6561/c**2 + 864/c**3)/2 - 81/(2*c))**(1/3)/3 + 2/(c*(-1/2 + sqrt(3)*I/2)*(sqrt(6561/c**2 + 864/c**3)/2 - 81/(2*c))**(1/3)),
-(sqrt(6561/c**2 + 864/c**3)/2 - 81/(2*c))**(1/3)/3 + 2/(c*(sqrt(6561/c**2 + 864/c**3)/2 - 81/(2*c))**(1/3))]
\end{verbatim}
Alternatively, we have $\dy\dx = \frac{6t^2}{6t} = t$, and so
\begin{align*}
3 - (2t^3 + 1) = t\(4 - (3t^2 + 1)\) \\
t^3(-2 + 3) + t(-4 + 1) + 3 - 1= 0 \\
t^3 -3t + 2 = 0 \\
(t - 1)^2(t + 2)
\end{align*}
\end{mdframed}
\subsection*{10.2.32}
Find the area enclosed by the curve $x = t^2 - 2t$, $y = \sqrt{t}$, and the y-axis.
\begin{mdframed}
The curve starts at the origin, goes up and left to a turning point then goes
up and right to $(0, \sqrt{2})$ and continues up and right.
The desired area can be expressed as a sum of horizontal strips:
\begin{align*}
\int_{t=0}^{t=2} x \dy
&= \int_{t=0}^{t=2} \(t^2 - 2t\) \frac{1}{2}t^{-1/2} \dt \\
&= \frac{1}{2} \int_{t=0}^{t=2} \(t^{3/2} - 2t^{1/2}\) \dt \\
&= \frac{1}{2} \left[ \frac{2}{5}t^{5/2} - \frac{4}{3} t^{3/2} \right]_{t=0}^{t=2} \\
&= \frac{1}{2} \(\frac{2}{5} \sqrt{32} - \frac{4}{3} \cdot 2\sqrt{2}\) \\
&= \(\frac{12}{15} \sqrt{2} - \frac{20}{15} \sqrt{2}\) \\
&= \frac{-8}{15} \sqrt{2} ~~~~~~~~~ \text{(Sign is wrong)}
\end{align*}
\end{mdframed}
\subsection*{10.2.33}
Find the area enclosed by the x-axis and the curve $x = t^3 + 1$, $y = 2t - t^2$
\begin{mdframed}
The curve starts at the origin, goes up to the right, turns down to the
right, and intersects the x-axis again at $t = 2$.
The desired area can be expressed as a sum of vertical strips:
\begin{align*}
\int_{t=0}^{t=2} y\dx
&= \int_{t=0}^{t=2} 2t - t^2 \dx \\
&= \int_{t=0}^{t=2} (2t - t^2) 3t^2 \dt \\
&= \int_{t=0}^{t=2} 6t^3 - 3t^4 \dt \\
&= \left[ \frac{3}{2}t^4 - \frac{3}{5}t^5 \right]_{t=0}^{t=2} \\
&= \frac{240}{10} - \frac{192}{10} \\
&= \frac{48}{10} \\
&= 4 + \frac{4}{5} ~~~~~~~ \checkmark
\end{align*}
\end{mdframed}
\subsection*{10.2.34}
Find the area of the region enclosed by the astroid $x = a\cos^3 \theta$,
$y = a \sin^3\theta$.
\begin{mdframed}
First note that $\dx = -3a\cos^2 \theta \sin\theta \dtheta$.
The area is
\begin{align*}
4\int_0^a y \dx
&= 4\int_0^a a \sin^3\theta \dx \\
&= 4\int_0^a -3a^2 \sin^4\theta \cos^2\theta \dtheta \\
\end{align*}
\begin{verbatim}
In [119]: integrate(-12 * a**2 * sin(theta)**4 * cos(theta)**2, (theta, pi/2, 0))
Out[119]: 3*pi*a**2/8
\end{verbatim}
$\checkmark$
Alternatively, $r = \sqrt{a^2\cos^6\theta + a^2\sin^6\theta}$, and the area
in the first quadrant is
\begin{align*}
\int_0^{\pi/2} \sqrt{a^2\cos^6\theta + a^2\sin^6\theta} \dtheta \\
\end{align*}
(Sympy chokes on this integral.)
\end{mdframed}
\subsection*{10.2.41}
Find the exact length of the curve
\begin{align*}
x = 1 + 3t^2, ~~~ y = 4 + 2t^3, ~~~ 0 \leq t \leq 1.
\end{align*}
\begin{mdframed}
The length is equal to the sum of hypotenuses, in the limit as the time
increments become small:
\begin{align*}
L &= \lim_{N \to \infty} \sum_{i=0}^N \sqrt{\Delta x(t_i, t_{i+1})^2 +
\Delta y(t_i, t_{i+1})^2}\\
&= \int_{t=0}^{t=1} \sqrt{\dx^2 + \dy^2}.
\end{align*}
Now, $\dx = 6t\dt$ and $\dy = 6t^2\dt$, so
\begin{align*}
L = \int_{t=0}^{t=1} 6t\dt \sqrt{1 + t^2}.
\end{align*}
The antiderivative is $2(1 + t^2) ^ {3/2}$, since
\begin{align*}
\ddt 2(1 + t^2) ^ {3/2} = 6t \sqrt{1 + t^2},
\end{align*}
and so
\begin{align*}
L = \left[2(1 + t^2) ^ {3/2}\right]_0^1 = 4\sqrt{2} - 2. ~~~~~~~ \checkmark
\end{align*}
\end{mdframed}
\subsection*{10.2.42}
Find the exact length of the curve
\begin{align*}
x = e^t - t, ~~~ y = 4e^{t/2}, ~~~ 0 \leq t \leq 2.
\end{align*}
\begin{mdframed}
\begin{align*}
L &= \int_{t=0}^{t=2} \sqrt{\(\dxdt\)^2 + \(\dydt\)^2} \dt \\
&= \int_0^2 \sqrt{(e^t - 1)^2 + 4e^t} \dt
= \int_0^2 \sqrt{e^{2t} + 2 e^t + 1} \dt
= \int_0^2 e^t + 1 \dt \\
&= \left[e^t + t\right]_0^2
= e^2 + 1. ~~~ \checkmark
\end{align*}
\end{mdframed}
\subsection*{10.2.43}
Find the exact length of the curve
\begin{align*}
x = t\sin t, ~~~ y = t \cos t, ~~~ 0 \leq t \leq 1.
\end{align*}
\begin{mdframed}
\begin{align*}
L &= \int_{t=0}^{t=2} \sqrt{\(\dxdt\)^2 + \(\dydt\)^2} \dt \\
&= \int_0^2 \sqrt{\(\sin t + t\cos t\)^2 + \(\cos t - t \sin t\)^2} \dt \\
&= \int_0^2 \sqrt{\sin^2 t + t^2 \cos^2 t + \cos^2 t + t^2 \sin^2 t} \dt \\
&= \int_0^2 \sqrt{1 + t^2} \dt.
\end{align*}
\textcolor{red}{I think these trig substitutions are the way to proceed with this integral?\\
\url{https://in.answers.yahoo.com/question/index?qid=20100303103406AAzKlz5}\\
seems to show how to proceed.}
Consider a right-angle triangle with adjacent $1$ and opposite $t$, so that
$t = \tan \theta$ and
\begin{align*}
\sqrt{1 + t^2} = \frac{\text{(hypotenuse)}}{1} = \frac{1}{\cos \theta}.
\end{align*}
Note that $\dt = \frac{1}{\cos^2\theta} \d\theta$ (quotient rule), and so
\begin{align*}
L = \int_{t=0}^{t=2} \frac{1}{\cos^3 \theta} \d\theta
\end{align*}
Alternatively, consider a right-angle triangle with adjacent $t$ and opposite $1$, so that
$t = \cot \theta$ and
\begin{align*}
\sqrt{1 + t^2} = \frac{\text{(hypotenuse)}}{1} = \frac{1}{\sin \theta}.
\end{align*}
Note that $\dt = \frac{-1}{\sin^2\theta}$, and so
\begin{align*}
L = \int_{t=0}^{t=2} \frac{-1}{\sin^3 \theta} \d\theta
\end{align*}
\end{mdframed}
\subsection*{10.2.61}
Find the exact area of the surface obtained by rotating the given curve about
the x-axis.
\begin{align*}
x = t^3, ~~~ y = t^2, ~~~ 0 \leq t \leq 1
\end{align*}
\begin{mdframed}
The Cartesian equation is $y = x^{2/3}$, so a concave-downward curve defined on $x \geq 0$.
The area is a sum of infinitesemal strips each with area $2\pi y\sqrt{\dx^2 + \dy^2}$.
Note, this is \textbf{not} $A = \int_{t=0}^{t=1} 2\pi y\dx$! We need to use
the hypotenuse in order for the integral to converge to the area (see
footnote).
\begin{align*}
A &= \int_{t=0}^{t=1} 2\pi y\sqrt{\dx^2 + \dy^2} \\
&= \int_{x=0}^{x=1} 2\pi x^{2/3}\sqrt{\dx^2 + \(\frac{2}{3} x^{-1/3} \dx\)^2} \\
&= \int_{x=0}^{x=1} 2\pi x^{2/3}\sqrt{1 + \frac{4}{9}x^{-2/3}} \dx \\
\end{align*}
Alternatively, as an integral over the t line,
\begin{align*}
A &= \int_{t=0}^{t=1} 2\pi y\sqrt{\dx^2 + \dy^2} \\
&= \int_{t=0}^{t=1} 2\pi t^2 \sqrt{9t^4 + 4t^2} \dt \\
&= \int_{t=0}^{t=1} 2\pi t^3 \sqrt{9t^2 + 4} \dt \\
&= \text{...} \\
&= 2\pi \left[ \frac{t^2}{27}(9t^2 + 4)^{3/2} - \frac{2}{1215}(9t^2 + 4)^{5/2}\right]_0^1 \\
&= 2\pi \(\frac{1}{27}13^{3/2} - \frac{2}{1215}13^{5/2} + \frac{64}{1215}\) \\
&= 2\pi \(\frac{1}{27}13^{3/2} - \frac{2}{1215}13^{5/2} + \frac{64}{1215}\) ... \text{almost correct}
\end{align*}
\end{mdframed}
\newpage
\subsection*{10.2.63}
Find the exact area of the surface obtained by rotating the given curve about
the x-axis.
\begin{align*}
x = a\cos^3\theta, ~~~ y = a\sin^3\theta, ~~~ 0 \leq \theta \leq \pi/2
\end{align*}
\includegraphics[width=500pt]{img/10-2-63.png}
\begin{mdframed}
\begin{align*}
A &= \int_0^{\pi/2} 2\pi y \sqrt{\dx^2 + \dy^2}\\
&= \int_0^{\pi/2} 2\pi a\sin^3\theta \sqrt{(-3a\sin\theta\cos^2\theta)^2 +
(3a\cos\theta\sin^2\theta)^2} \dtheta\\
&= \int_0^{\pi/2} 2\pi a\sin^3\theta \sqrt{9a^2\sin^2\theta\cos^4\theta +
9a^2\cos^2\theta\sin^4\theta} \dtheta\\
&= \int_0^{\pi/2} 2\pi a\sin^3\theta 3a\sin\theta\cos\theta \sqrt{\cos^2 + \sin^2\theta} \dtheta\\
&= 6\pi a^2\int_0^{\pi/2} \sin^4\theta \cos\theta \dtheta\\
&= 6\pi a^2 \left[\frac{1}{5}\sin^5\theta \dtheta \right]_0^{\pi/2}\\
&= \frac{6}{5}\pi a^2 ~~~ \checkmark
\end{align*}
\end{mdframed}
\newpage
\subsection*{10.2.65}
Find the surface area generated by rotating the curve about the y-axis:
\begin{align*}
x = 3t^2, ~~~ y = 2t^3, ~~~ 0 \leq t \leq 5
\end{align*}
\begin{mdframed}
\includegraphics[width=400pt]{img/10-2-66.png}
\begin{align*}
A &= \int_{t=0}^{t=5} 2\pi x \sqrt{\dx^2 + \dy^2}\\
&= \int_{t=0}^{t=5} 2\pi 3t^2 \sqrt{6^2t^2 + 6^2t^4} \dt\\
&= 36\pi \int_{t=0}^{t=5} t^3 \sqrt{1 + t^2} \dt\\
\end{align*}
(Stewart answers really do seem to have a mistake this time?)
\end{mdframed}
\subsection*{10.2.65}
...
\subsection*{10.3.17}
Identify the curve by finding a Cartesian equation for the curve
\begin{align*}
r = 5\cos\theta.
\end{align*}
\begin{mdframed}
We want an expression involving $x$ and $y$: a condition that points $(x, y)$
must satisfy in order to belong to the curve. We have
\begin{align*}
r &= 5\cos\theta\\
r^2 &= 5r\cos\theta\\
x^2 + y^2 &= 5x\\
x^2 - 5x + y^2 &= 0\\
\(x - \frac{5}{2}\)^2 + y^2 &= \frac{25}{4}\\
\end{align*}
\includegraphics[width=300pt]{img/10-3-17-a.png}
~\\
This isn't the requested answer, but if for some reason you wanted to
parameterize the $x$ and $y$ coordinates as a function of $r$, then
\begin{align*}
x = r\cos\theta = \frac{r^2}{5},
\end{align*}
and
\begin{align*}
r^2 = 25(1 - \sin^2\theta)\\
y = r\sin\theta = r\sqrt{1 - \frac{r^2}{25}}.
\end{align*}
\includegraphics[width=300pt]{img/10-3-17.png}
\end{mdframed}
\subsection*{10.3.18}
Identify the curve by finding a Cartesian equation for the curve
\begin{align*}
\theta = \pi/3.
\end{align*}
\begin{mdframed}
\begin{align*}
\sin\theta &= \frac{\sqrt{3}}{2}\\
\cos\theta &= \frac{1}{2}\\
\frac{y}{x} &= \frac{\sin\theta}{\cos\theta} = \sqrt{3}\\
y &= \sqrt{3}x
\end{align*}
\end{mdframed}
\subsection*{10.3.21}
Find a polar equation for the Cartesian equation $y = 2$.
\begin{mdframed}
\begin{align*}
r\sin\theta = 2
\end{align*}
\end{mdframed}
\subsection*{10.3.22}
Find a polar equation for the Cartesian equation $y = x$.
\begin{mdframed}
\begin{align*}
\theta = \frac{\pi}{4}
\end{align*}
\end{mdframed}
\subsection*{10.3.25}
Find a polar equation for the Cartesian equation $x^2 + y^2 = 2cx$.
\begin{mdframed}
\begin{align*}
r^2 \cos^2\theta + r^2\sin^2\theta &= 2cr\cos\theta\\
r^2 &= 2cr\cos\theta\\
r &= 2c\cos\theta
\end{align*}
\includegraphics[width=300pt]{img/10-3-25-1.png}\\
\includegraphics[width=200pt]{img/10-3-25-2.png}
\end{mdframed}
\newpage
\subsection*{10.3.29}
Sketch the curve in polar coordinates by first sketching $r$ as a function of
$\theta$ in Cartesian coordinates: $r = -2\sin\theta$.
\begin{mdframed}
\includegraphics[width=300pt]{img/10-3-29-1.png}\\
Now,
\begin{align*}
r &= -2\sin\theta\\
r^2 &= -2r\sin\theta\\
x^2 + y^2 &= -2y\\
x^2 + (y+1)^2 &= 1,
\end{align*}
so it should be a circle with radius 1, shifted down 1 units. I believe that
the circle is traced once for $0 \leq \theta < \pi$, and again for
$\pi \leq \theta < 2\pi$.\\\\
\includegraphics[width=200pt]{img/10-3-29-2.png}
\includegraphics[width=200pt]{img/10-3-29-3.png}
\\
\end{mdframed}
\newpage
\subsection*{10.3.30}
Sketch the curve in polar coordinates by first sketching $r$ as a function of
$\theta$ in Cartesian coordinates: $r = 1 - \cos\theta$.
\begin{mdframed}
\includegraphics[width=300pt]{img/10-3-30.png}\\
From which we can see that the graph is a cardioid.
\begin{align*}
r = 1 - \cos\theta\\
r^2 = r - r\cos\theta\\
x^2 + y^2 = \sqrt{x^2 + y^2} - x\\
(x(x+1) + y^2)^2 = x^2 + y^2
\end{align*}
\includegraphics[width=400pt]{img/10-3-30-2.png}
\end{mdframed}
\subsection*{10.3.33}
Sketch the curve in polar coordinates by first sketching $r$ as a function of
$\theta$ in Cartesian coordinates: $r = \theta, \theta \geq 0$.
\begin{mdframed}
It's a spiral.\\
\includegraphics[width=300pt]{img/10-3-33.png}
\end{mdframed}
\newpage
\subsection*{10.3.35}
Sketch the curve in polar coordinates by first sketching $r$ as a function of
$\theta$ in Cartesian coordinates: $r = 3\cos(3\theta)$.
\begin{mdframed}
\includegraphics[width=300pt]{img/10-3-35.png}
\end{mdframed}
\newpage
\subsection*{10.3.56}
Find the slope of the tangent line to the polar curve, at $\theta$:\\
$r = 2 + \sin 3\theta, \theta=\pi/4$
\begin{mdframed}
\includegraphics[width=200pt]{img/10-3-56.png}\\
It looks like the slope might be -1. We use the chain rule, $\dydx = \(\dydtheta\)/\(\dxdtheta\)$ and so we need
$\dxdtheta$ and $\dydtheta$.
\begin{align*}
x &= r\cos\theta = (2 + \sin 3\theta)\cos\theta\\
\dxdtheta &= (3\cos 3\theta)\cos\theta - (2 + \sin 3\theta)\sin\theta\\
y &= r\sin\theta = (2 + \sin 3\theta)\sin\theta\\
\dydtheta &= (3\cos 3\theta)\sin\theta + (2 + \sin 3\theta)\cos\theta\\
\dydx &= \frac{\dydtheta}{\dxdtheta}\\
&= \frac{(3\cos 3\theta)\sin\theta + (2 + \sin 3\theta)\cos\theta}
{(3\cos 3\theta)\cos\theta - (2 + \sin 3\theta)\sin\theta}
\end{align*}
At $\theta=\pi/4$ this evaluates to
\begin{align*}
\dydx
&= \frac{\frac{-3}{\sqrt{2}}\frac{1}{\sqrt{2}} + (2 + \frac{1}{\sqrt{2}})\frac{1}{\sqrt{2}}}
{\frac{-3}{\sqrt{2}}\frac{1}{\sqrt{2}} - (2 + \frac{1}{\sqrt{2}})\frac{1}{\sqrt{2}}}\\
&= \frac{ 2\sqrt{2} - 2}
{-2\sqrt{2} - 4}
= \frac{ \sqrt{2} - 1}
{-\sqrt{2} - 2} \approx -0.12 ~~~ \checkmark
\end{align*}
\end{mdframed}
\newpage
\subsection*{10.3.57}
Find the slope of the tangent line to the polar curve, at $\theta$:\\
$r = 1/\theta$, ~~~~~~$\theta = \pi$.
\begin{mdframed}
\includegraphics[width=300pt]{img/10-3-57.png}\\
If I'm understanding this correctly, even as $\theta \to 0$, the
y-coordinates aproaches 1 (since $\lim_{\theta \to 0}\frac{\sin\theta}{\theta} = 1$).
Anyway, at $\theta=\pi$, the slope is negative something (hard to tell with sympy's aspect ratio).
\begin{align*}
\dydtheta
&= \ddtheta \frac{\sin\theta}{\theta}
= \frac{\theta \cos\theta - \sin\theta}{\theta^2}\\
\\
\dxdtheta
&= \ddtheta \frac{\cos\theta}{\theta}
= \frac{-\theta\sin\theta - \cos\theta}{\theta^2}\\
\\
\dydx &= \frac{\theta \cos\theta - \sin\theta}
{-\theta\sin\theta - \cos\theta}
\end{align*}
At $\theta=\pi$ this is $-\pi$. ~~~ \checkmark
\end{mdframed}
\newpage
\subsection*{10.3.61}
Find the points where the tangent is horizontal or vertical.
$r = 3\cos\theta$
\begin{mdframed}
This is a circle with radius $3/2$, centered at $(3/2, 0)$. So the tangent is
vertical at $\theta = k\frac{\pi}{2}$ for $k \in \Z$ (the left and right
extrema of the circle). It's less clear where it is horizontal:
\begin{align*}
y &= \sin\theta\cos\theta\\
\dydtheta &= \cos^2\theta -\sin^2\theta\\
\\
x &= \cos^2\theta\\
\dxdtheta &= -2\sin\theta\cos\theta\\
\end{align*}
As expected, $\dxdtheta = 0$ (tangent vertical) at
$\theta = k\frac{\pi}{2}, k=0, 1, 2, ...$.\\
And $\dydtheta = 0$ (tangent horizontal) at
$\theta = k\frac{\pi}{4}, k=1,3,5,...$.
\end{mdframed}
\subsection*{10.3.63}
Find the points where the tangent is horizontal or vertical.
$r = 1 + \cos\theta$
\newpage
\subsection*{10.3.65}
Show that the polar equation $r = a\sin\theta + b\cos\theta$, where
$ab \neq 0$, represents a circle, and find its center and radius.\\
\begin{mdframed}
The general Cartesian equation of a circle is
\begin{align*}
(x - c)^2 + (y - d)^2 = e^2,
\end{align*}
which is centered at $(c, d)$ with radius $e$. We have
\begin{align*}
r &= a\sin\theta + b\cos\theta\\
r^2 &= ar\sin\theta + br\cos\theta\\
x^2 + y^2 - ay - bx &= 0\\
\(x - \frac{b}{2}\)^2 + \(y - \frac{a}{2}\)^2 &= \frac{a^2 + b^2}{4},
\end{align*}
so centered at $\(\frac{b}{2}, \frac{a}{2}\)$ with radius $\frac{\sqrt{a^2 + b^2}}{2}$. \checkmark
\end{mdframed}
\newpage
\subsection*{10.3.49}
Show that the polar curve $r = 4 + 2\sec\theta$ (a conchoid) has the line $x=2$
as a vertical asymptote by showing that $\lim_{r \to \pm \infty} x = 2$.\\
\begin{mdframed}
\begin{align*}
r &= 4 +\frac{2}{\cos\theta} \iff \cos\theta =\frac{2}{(r-4)}\\
x &= r\cos\theta =\frac{2r}{(r-4)} = \frac{2}{1-4/r}\\
\lim_{r \to \pm\infty} x &= 2
\end{align*}
\end{mdframed}
\newpage
\subsection*{10.3.66}
Show that the curves $r = a\sin\theta$ and $r = a\cos\theta$ intersect at right
angles.
\begin{mdframed}
\includegraphics[width=300pt]{img/10-3-66.png}\\
Strategy:
\begin{enumerate}
\item Determine intersection
\item Determine tangents at intersection
\item Show that these are orthogonal
\end{enumerate}
\subsubsection*{Cartesian coordinates}
\textbf{Determine intersection}\\
Multiplying the original polar equations on both sides by $r$, we see that in
Cartesian coordinates, we require points $(x, y)$ that satisfy
\begin{align*}
\begin{cases}
x^2 + y^2 &= ay\\
x^2 + y^2 &= ax.
\end{cases}
\end{align*}
Clearly the two equations together imply $y = x$, since $a > 0$. Substituting
into the first equation, this gives
\begin{align*}
2y^2 &= ay \iff y(2y - a) = 0 \iff y = 0 \text{~~or~~} y = \frac{a}{2}.
\end{align*}
The first equation is equivalent to $x = \sqrt{ay - y^2}$, so the solutions
are $(0, 0)$ and $(\frac{a}{2}, \frac{a}{2})$.
\textbf{Determine tangents}\\
For the first curve we have
\begin{align*}
x^2 + y^2 - ay = 0.
\end{align*}
Viewed as a function $\R^2 \to \R$, $\dx$ and $\dy$ must satisfy
\begin{align*}
2x \dx + (2y - a) \dy &= 0\\
\implies \dydx &= \frac{-2x}{2y - a}.\\
&= 0, \infty \text{~~at~~} \(0, 0\), \(\frac{a}{2}, \frac{a}{2}\).
\end{align*}
Similarly for the other curve we have
\begin{align*}
x^2 + y^2 - ax &= 0\\
(2x - a) \dx + 2y \dy &= 0\\
\dydx &= \frac{a - 2x}{2y}\\
&= \infty, 0 \text{~~at~~} \(0, 0\), \(\frac{a}{2}, \frac{a}{2}\).
\end{align*}
\textbf{Show that these are orthogonal}
Show that the dot product is zero between vectors having the same direction
as the tangents.
That sounds sensible, but it is kind of clear from the values of $\dydx$
above that they are orthogonal at both points of intersection.
\newpage
\subsubsection*{Polar coordinates}
\textbf{Determine intersection}\\
We need to find points $(r, \theta)$ that satisfy
\begin{align*}
\begin{cases}
r &= a\sin\theta\\
r &= a\cos\theta.
\end{cases}
\end{align*}
Clearly such points lie on the diagonal $\tan\theta = 1$, i.e.
$\theta = \frac{\pi}{4}$. Substituting into either equation gives
$r = \frac{a}{\sqrt{2}}$, so one of the points of intersection is
$\(\frac{a}{\sqrt{2}}, \frac{\pi}{4}\)$. The other one is at the origin but I
seem to be struggling to make that come out of the algebra.
\textbf{Determine tangents}\\
We examine $\dydtheta$ and $\dxdtheta$.
For the first curve
\begin{align*}
y &= r\sin\theta = a\sin^2\theta\\
\dydtheta &= 2a\sin\theta\cos\theta = a\sin 2\theta\\
&= a \text{~~when~~} \theta=\frac{\pi}{4}\\
\\
x &= r\cos\theta = a\sin\theta\cos\theta = \frac{a}{2}\sin 2 \theta\\
\dxdtheta &= a\cos 2\theta\\
&= 0 \text{~~when~~} \theta = \frac{\pi}{4},
\end{align*}
so the first curve has a vertical tangent at $\theta=\frac{\pi}{4}$.
For the second curve
\begin{align*}
x &= r\cos\theta = a\cos^2\theta\\
\dxdtheta &= -2a\sin\theta\cos\theta = -a\sin 2\theta\\
&= -a \text{~~when~~} \theta=\frac{\pi}{4}\\
\\
y &= r\sin\theta = a\sin\theta\cos\theta = \frac{a}{2}\sin 2 \theta\\
\dydtheta &= a\cos 2\theta\\
&= 0 \text{~~when~~} \theta = \frac{\pi}{4}.
\end{align*}
so the second curve has a horizontal tangent at $\theta=\frac{\pi}{4}$.
Therefore the two curves intersect at right-angles when $\theta=\frac{\pi}{4}$.
\end{mdframed}
\newpage
\subsection*{10.4.2}
Find the area of the region
\begin{align*}
r = \cos\theta, ~~~ 0 \leq \theta \leq \pi/6
\end{align*}
\begin{mdframed}
The curve describes a circle. Note that a sector subtended by $2\pi$ radians
has area $\pi r^2$, therefore a sector of $\d\theta$ radians has area
$\frac{\d\theta}{2}r^2$. The requested area is
\begin{align*}
\int_0^{\pi/6} \frac{\d\theta}{2}r^2
&= \int_0^{\pi/6} \frac{\d\theta}{2}\cos^2\theta.\\
\end{align*}
Let $I = \int \cos^2\theta \dtheta$. Integration by parts
\begin{align*}
\d(u v) &= u\d v + v\du\\
uv &= \int u \d v + \int v \du\\
\int u \d v &= uv - \int v \du
\end{align*}
gives
\begin{align*}
u &= \cos\theta\\
\d v &= \cos\theta \dtheta\\
I = \int \cos^2 \theta \d\theta &= \cos\theta\sin\theta + \int \sin^2\theta \dtheta\\
&= \cos\theta\sin\theta + \theta - I\\
&= \frac{1}{2}\(\cos\theta\sin\theta + \theta\) + C\\
&= \frac{1}{4}\sin 2\theta + \frac{\theta}{2} + C
\end{align*}
Thus the requested area is
\begin{align*}
\frac{1}{8} \sin 2\theta + \frac{1}{4}\theta \Big|^{\pi/6}_0
&= \frac{1}{8}\sin\frac{\pi}{3} + \frac{\pi}{24} = \frac{\sqrt{3}}{16} + \frac{\pi}{24}. \checkmark
\end{align*}
\end{mdframed}
\subsection*{10.4.5}
\includegraphics[width=200pt]{img/10-4-5-6.png}
\begin{mdframed}
Note that a sector subtended by $\theta$ radians has area
$\pi r^2 \cdot \frac{\theta}{2\pi} = \frac{\theta}{2}r^2$.\\\\
\textbf{5.} The area is
\begin{align*}
\int_0^{\pi/2} \frac{\d\theta}{2}\sin2\theta = -\frac{1}{4}\cos2\theta\Big|_0^{\pi/2} = -\frac{1}{4}(-1 - 1) = \frac{1}{2}.
\end{align*}\\
\textbf{6.} The area is
\begin{align*}
\int_{\pi/2}^\pi \frac{1}{2}\big(2 + \cos\theta\big)^2 \d\theta\\
\end{align*}
\end{mdframed}
\subsection*{10.4.6}
\includegraphics[width=300pt]{img/10-4-7-8.png}
\begin{mdframed}
\textbf{7.} The area is $\int_{-3\pi/2}^{\pi/2}\frac{\d\theta}{2}(4 + 3\sin\theta)^2$
\end{mdframed}
\subsection*{10.4.7}
\subsection*{10.4.9}
\subsection*{10.4.10}
\subsection*{10.4.17}
\subsection*{10.4.18}
\subsection*{10.4.23}
\subsection*{10.4.24}
\subsection*{10.4.27}
\subsection*{10.4.28}
\subsection*{10.4.29}
\subsection*{10.4.30}
\subsection*{10.4.31}
\subsection*{10.4.32}
\subsection*{10.4.37}
\subsection*{10.4.38}
\subsection*{10.4.39}
\subsection*{10.4.41}
\subsection*{10.4.45}
\subsection*{10.4.47}
\subsection*{10.4.55}
\subsection*{12.1.3}
\subsection*{12.1.6}
\subsection*{12.1.7}
\subsection*{12.1.9}
\subsection*{12.1.11}
\subsection*{12.1.17}
\subsection*{12.1.25}
\subsection*{12.1.27}
\subsection*{12.1.30}
\subsection*{12.1.31}
\subsection*{12.1.32}
\subsection*{12.1.35}
\subsection*{12.1.39}
\subsection*{12.1.40}
\subsection*{12.1.41}
\subsection*{12.1.44}
\subsection{Example 7: The Cycloid}
The curve traced out by a point $P$ on the circumference of a circle as the
circle rolls along a straight line is called a cycloid. If the circle has
radius $r$ and rolls along the $x$-axis and if one position of $P$ is the
origin, find parametric equations for the cycloid.
\begin{mdframed}
...
\end{mdframed}
\section{Math 53 Midterm I Februrary 2011 Frenkel}
1. Consider the curve in $\R^2$ defined by the equation
$$
r = \cos(2\theta)
$$.
(a) Sketch this curve.
(b) Find the area of the region enclosed by one loop of this curve.\\
\begin{mdframed}
The area of a sector of $\dtheta$ radians is $\frac{\dtheta}{2\pi}\pi r^2 = \frac{\dtheta}{2}\cos^2(2\theta)$. Recall the identity $\cos^2 t = \frac{1}{2} + \frac{1}{2}\cos(2t)$. Therefore the area of one loop is
\begin{align*}
\int_{-\pi/4}^{\pi/4} \frac{\dtheta}{2}\cos^2(2\theta)
=&\frac{1}{4}\int_{-\pi/4}^{\pi/4} (1 + \cos 4\theta) \dtheta \\
=& \Big|\frac{1}{4} + \frac{1}{16}\sin(4\theta)\Big|_{-\pi/4}^{\pi/4} \\
=& \frac{\pi}{8}.
\end{align*}
\end{mdframed}~\\
2. Find an equation of the surface consisting of all points in $\R^3$ that are equidistant
from the point $(0, 0, 1)$ and the plane $z = 2$.\\
\begin{mdframed}
Such points satisfy $\sqrt{x^2 + y^2 + (z - 1)^2} = z - 2$, which simplifies as
\begin{align*}
x^2 + y^2 + z^2 - 2z + 1 &= z^2 - 4z + 4 \\
z &= -\frac{x^2}{2} -\frac{y^2}{2} + \frac{3}{2} \\
\end{align*}
\end{mdframed}~\\
(b) Sketch this surface. What is it called?
\begin{mdframed}
Concave-down paraboloid
\end{mdframed}
3. Show that the function $\frac{x^{50}y^{50}}{x^{100} + y^{200}}$ does not
have a limit at $(x, y) = (0, 0)$.
\begin{mdframed}
First consider approaching $(0, 0)$ along the line $x=0$: this gives a limiting value of 0.
Now consider approaching along the line $x=y$: this gives a limiting value of $\frac{x^{100}}{x^{100} + x^{200}} \to 1$.
Since the two approaches gives different results, the limit does not exist.
\end{mdframed}~\\
4. Consider the function $f(x,y) = x\cos(y) + y^2e^x + x$.
(a) Find the differential of this function
\begin{mdframed}
\begin{align*}
\d f(x, y) &= \partiald{f}{x}\d x + \partiald{f}{y}\d y\\
&= (\cos(y) + y^2e^x + 1)\d x + (-x\sin(y) + 2ye^x) \d y
\end{align*}
\end{mdframed}
(b) Find an equation of the tangent plane to the graph of this function at the
point $(0, \pi, \pi^2)$.
\begin{mdframed}
Points in the plane passing through $(x_0, y_0, z_0)$ satisfy
\begin{align*}
z - z_0 = (x - x_0)\partiald{f}{x} + (y - y_0)\partiald{f}{y},
\end{align*}
so in this case
\begin{align*}
z - \pi^2 &= (x - 0)\(\cos(\pi) + \pi^2e^0 + 1\) + (y - \pi)\(-0\sin(\pi) + 2\pi e^0\)\\
z &= \pi^2x + 2\pi y - \pi^2
\end{align*}
\end{mdframed}~\\
5. Suppose we need to know an equation of the tangent plane to a surface $S$ at
the point $P = (1, 3, 2)$. We don't have an equation for $S$, but we know that the
curves
\begin{align*}
r_1(t) &= \langle 1 + 5t, 3 - t^2, 2 + t - t^3 \rangle, \\
r_2(s) &= \langle 3s - 2s^2, s + s^3 + s^4, s - s^2 + 2s^3 \rangle
\end{align*}
both lie in $S$. Find an equation of the tangent plane to $S$ at the point $P$.
~\\\begin{mdframed}
First note that $P$ lies in both curves, since $r_1(0) = r_2(1) = P$.
Now we use the two curves to obtain two vectors that lie in the tangent
plane. Their cross product is a vector normal to the tangent plane and provides
the coefficients for the equation of the plane.
The derivative of a curve $r(t)$ with respect to the parameter $t$ is a
function giving a tangent vector. The derivatives are:
\begin{align*}
\dot r_1(t) = \cveccc{5}{-2t}{1 - 3t^2}, ~~~
\dot r_2(s) = \cveccc{3 - 4s}{1 + 3s^2 + 4s^3}{1 - 2s + 6s^2}.
\end{align*}
Evaluated at $P = \cveccc{1}{3}{2}$ these are
\begin{align*}
\dot r_1(t) = \cveccc{5}{0}{1}, ~~~
\dot r_2(s) = \cveccc{-1}{8}{5}.
\end{align*}
Their cross product is
\begin{align*}
\cveccc{5}{0}{1} \times \cveccc{-1}{8}{5} =
\cveccc{(0 \times 5) - (1 \times 8)}
{(1 \times -1) - (5 \times 5)}
{(5 \times 8) - (0 \times -1)} =
\cveccc{-8}{-26}{40}
\end{align*}
Therefore points in the plane satisfy