-
Notifications
You must be signed in to change notification settings - Fork 2
/
analysis--real-analysis-choimet-queffelec.tex
49 lines (44 loc) · 1.55 KB
/
analysis--real-analysis-choimet-queffelec.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
\section{Choimet \& Queffélec: Twelve Landmarks of Twentieth-Century Analysis}
\begin{claim*}
For real $0 \leq x < 1$ and non-negative integer $n$, the following inequality holds:
\begin{align*}
1 - x^n \leq n(1 - x)
\end{align*}
\end{claim*}
\begin{proof}[Proof 1 (induction)]~\\
It is true for $n=0$. Suppose it is true for $n=k$. Then, after multiplying
both sides by $x$, we have
\begin{align*}
x(1 - x^k) &\leq kx(1 - x).
\end{align*}
Multiplying out and rearranging gives
\begin{align*}
x - x^{k+1} &\leq kx - kx^2\\
1 - 1 + x - x^{k+1} &\leq kx - kx^2\\
1 - x^{k+1} &\leq 1 + (k - 1)x - kx^2.
\end{align*}
The RHS factorises as $(1 + kx)(1 - x)$ which is less than
$(1+k)(1-x)$. Therefore
\begin{align*}
1 - x^{k+1} &\leq (k + 1)(1 - x),
\end{align*}
which proves the claim by induction.
\end{proof}
\begin{proof}[Proof 2]~\\
The claim is true for $n=0$, so restrict attention to $n > 0$. We want to show that
\begin{align*}
\frac{1 - x^n}{n(1 - x)} \leq 1.
\end{align*}
Note that
\begin{align*}
(1 - x)\sum_{i=0}^{n-1}x^i &= (1 + x + x^2 + \ldots + x^{n-1}) - (x + x^2 + x^3 + \ldots + x^n)\\
&= 1 - x^n.
\end{align*}
(This can be arrived at by performing long division of $1-x$ into $1 - x^n$.)
Therefore the ratio is
\begin{align*}
\frac{1 - x^n}{n(1 - x)} &= \frac{(1 - x)\sum_{i=0}^{n-1}x^i}{n(1 - x)}\\
&= \frac{1}{n}\sum_{i=0}^{n-1}x^i,
\end{align*}
which is less than 1, as required.
\end{proof}