-
Notifications
You must be signed in to change notification settings - Fork 2
/
analysis--oxford-M2-real-analysis-II.tex
138 lines (109 loc) · 4.98 KB
/
analysis--oxford-M2-real-analysis-II.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
\documentclass[12pt]{article}
\usepackage{mathematics}
\begin{document}
\title{Oxford M2 - Real Analysis II - Continuity and Differentiability
\footnotetext{\url{https://courses.maths.ox.ac.uk/node/37497}}} \author{Dan Davison}
\author{}
\date{}
\maketitle
\section{Misc}
\begin{mdframed}
Prove that $\lim_{x \to 2} x^2 = 4$.
\end{mdframed}
\begin{mdframed}
Question about images/preimages of open sets.
\end{mdframed}
\newpage
\begin{definition*}[floor and ceil]
Let $x \in \R$. Then floor of $x$ is $\floor{x} = \max\{n \in \Z ~|~ n \leq x\}$ and ceil of $x$
is $\ceil{x} = \min\{n \in \Z ~|~ n \geq x\}$.
\end{definition*}
\begin{theorem*}[$\floor{x}$ and $\ceil{x}$ exist]~\\
Let $x \in \R$. Define $S = \{n \in \Z ~|~ n \geq x\} \subset \R$. Note that $S$ is bounded below
by $x$. Also $S$ is non-empty by the Archimedean Property of $\N$, since otherwise $x$ would be
an upper bound for $\N$. Therefore $\ceil{x} = \min S$ exists by Well-Ordering.
Similarly, $\floor{x}$ exists.
\end{theorem*}
\begin{mdframed}
(Question from Alex Coward)\\
Define $f:\R\to\R$ by
\begin{align*}
f(x) =
\begin{cases}
0 ~~~~~~~~~~ & x \in (\R\setminus\Q)\cup\{0\}\\
\frac{1}{q} & x = \frac{p}{q} \in \Q, \gcd(p, q) = 1, q > 0.
\end{cases}
\end{align*}
Where is $f$ continuous?
\end{mdframed}
\begin{definition*}[Stride]
Let $S = \big\{\frac{1}{q} ~|~ q \in \N\big\}$. For $x = \frac{p}{q} \in \Q$, where
$\gcd(p, q) = 1$, $q > 0$, define the stride function $s:\Q\to S$ by $x \mapsto \frac{1}{q}$. We
say that the stride of $x$ is $s(x)$.
\end{definition*}
% \begin{intuition*}
% At rational $x$, $f(x)$ returns the largest stride that hits $x$ when starting from zero. At
% irrational $x$ (and zero), $f(x) = 0$.
% \end{intuition*}
\begin{claim*}
$f$ is continuous at $0$, i.e. $\lim_{x \to 0}f(x) = 0$.
\end{claim*}
\begin{proof}
Fix $\epsilon > 0$ and take $\delta = \epsilon$. We claim that
$0 < |x| < \delta \implies |f(x)| < \epsilon$.
At irrational values $0 < |x| < \delta$, we have $|f(x)| = 0 < \epsilon$.
At rational values $0 < |x| < \delta$, we have $x = \frac{p}{q} \in \Q, \gcd(p, q) = 1$ for some
$p \in \Z, q \in \N$ with $p, q \neq 0$. Therefore
\begin{align*}
|f(x)| = \Big|\frac{1}{q}\Big| \leq \Big|\frac{p}{q}\Big| = |x| < \delta = \epsilon.
\end{align*}
\end{proof}
\begin{claim*}
$f$ is continuous on $\R\setminus\Q$.
\end{claim*}
\begin{proof}
Let $a \in \R\setminus\Q$ and fix $0 < \epsilon < 1$. Note that $f(a) = 0$. We now construct an
interval centered at $a$ that excludes rational numbers with stride greater than or equal to
$\epsilon$.
Formally, we claim that there exists $\delta > 0$ such that
$0 < |x - a| < \delta \implies |f(x)| < \epsilon$.
Define $T = \{\frac{1}{n} ~|~ n \in \N, \frac{1}{n} > \epsilon\}$. Note that $T$ is non-empty
since $\epsilon < 1$ therefore $1 \in T$. Since $T$ is non-empty, finite, and bounded below,
$\min T$ exists. Let $\frac{1}{m} = \min T$.
Let $K = \{k \in \N ~|~ k < m\}$, so that $\frac{1}{k} \geq \epsilon$ for all $k \in K$.
For each $k \in K$ define $U_k$ by $U_k = \{\frac{n}{k} ~|~ \frac{n}{k} < a, n \in \N\}$. Note
that $\max U_k$ exists and is equal to $\frac{\floor{ak}}{k}$ (\red{Proof needed?}). Let
$u^* = \max ~ \{\max U_K ~|~ k \in K\}$.
Now perform the analogous procedure for values greater than $a$. For each $k \in K$ define $V_k$
by $V_k = \{\frac{n}{k} ~|~ \frac{n}{k} > a, n \in \N\}$. Note that $\min V_k$ exists and is
equal to $\frac{\ceil{ak}}{k}$. Let $v^* = \min ~ \{\min V_K ~|~ k \in K\}$.
Set $\delta = \min(|a - u^*|, |a - v^*|)$. Then
$0 < |x - a| < \delta \implies |f(x)| < \epsilon$.
\end{proof}
\begin{claim*}
$f$ is not continuous on $\Q$.
\end{claim*}
\begin{proof}
Let $a \in \Q\setminus\{0\}$. Then $f(a) = s(a)$, the stride of $a$. Suppose for a contradiction
that $f$ is continuous at $a$. Let $\epsilon = s(a)/2$. Then there exists $\delta > 0$ such that
$|x - a| < \delta \implies |f(x) - s(a)| < \epsilon$. Note that there exists
$b \in (a, a + \delta) \cap \R\setminus\Q$, since there is an irrational number between any two
real numbers. But $|f(b) - s(a)| = s(a) > \epsilon$, a contradiction. Therefore $f$ is not
continuous at $a$.
\end{proof}
(I thought I would need the following as a lemma to prove that minima of $U_k$ and $V_k$ above
exist, but I have not used it.)
\begin{theorem*}[well-order isomorphism]
Let $S$ be a set with a well-ordering. I.e. every non-empty subset of $S$ has a least
element. Let $T$ be a set and let $f:S \to T$ be a bijection with the property that
\begin{align*}
s_1 \leq s_2 \iff f(s_1) \leq f(s_2).
\end{align*}
Then $<$ is a well-ordering on $T$.
\end{theorem*}
\begin{proof}
Let $\emptyset \neq U \subseteq T$. We claim that $\min T$ exists and is given by
$\min T = f(\min S)$. Indeed suppose that there exists $t \in T$ such that $t < f(\min S)$. But
then $f^\1(t) < \min S$, a contradiction. Therefore $\min T = f(\min S)$ as claimed.
\end{proof}
\end{document}