-
Notifications
You must be signed in to change notification settings - Fork 2
/
analysis--oxford-A5-topology.tex
77 lines (51 loc) · 2.42 KB
/
analysis--oxford-A5-topology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
\documentclass[12pt]{article}
\usepackage{mathematics}
\title{Oxford A5 - Topology
\footnotetext{\url{https://courses.maths.ox.ac.uk/node/37667}}} \author{Dan Davison}
\author{}
\date{}
\begin{document}
% \maketitle
% \tableofcontents
\newpage
\section{Sheet 1}
\let\T\undefined
\newcommand{\T}{\mathcal T}
\newcommand{\Tleft}{\T_\text{left}}
\subsection{}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-a5-1-1.png}
\end{mdframed}
\begin{proof}
Let $\Tleft$ be the set of subsets $U$ of $\R$ such that for all $x \in U$ there exists
$\epsilon > 0$ such that $(x - \epsilon, x] \subseteq U$.
We must show that
\begin{enumerate}
\item {\bf $\R \in \Tleft$}
This is obviously true: $\R \subseteq \R$ and for all $x \in \R$ there exists $\epsilon > 0$
such that $(x - \epsilon, x] \subseteq \R$
\item {\bf $\Tleft$ is closed under finite intersections.}
Let $U_1, U_2 \in \Tleft$ and let $\epsilon_i:U_i \to \R^{>0}$ be such that
$(x - \epsilon_i(x), x] \subseteq U_i$ for all $x$ in $U_i$, $i = 1, 2$.
If $U_1 \cap U_2 = \emptyset$ then $U_1 \cap U_2 \in \Tleft$ as required.
Alternatively, let $x \in U_1 \cap U_2$ and let
$\epsilon = \min(\epsilon_1(x), \epsilon_2(x))$.
Note that the definition of $\epsilon_i$ implies that $(x - \epsilon, x] \subseteq U_1$ and
$(x - \epsilon, x] \subseteq U_2$.
Therefore $(x - \epsilon, x] \subseteq U_1 \cap U_2$, and so $U_1 \cap U_2 \in \Tleft$.
Let $\bigcap_{i \in I} U_i$ be a finite intersection, where $I$ is a finite index set. Note
that this intersection can be constructed by iterating the above argument, leading to the
conclusion that $\bigcap_{i \in I} U_i \in \Tleft$ as required.
\item {\bf $\Tleft$ is closed under arbitrary unions.}
We must show that $\bigcup_{i \in I} U_i \in \Tleft$ for any choice of index set $I$, whether
finite, or countably infinite, or uncountably infinite.
Suppose for a contradiction that there exists an index set $I$ such that
$\bigcup_{i \in I} U_i \notin \Tleft$. Let $V = \bigcup_{i \in I} U_i$.
Then there exists $x \in V$ such that for all $\epsilon > 0$ we have
$(x - \epsilon, x] \not\subseteq V$.
Note that $x \in U_i$ for some $i \in I$. Therefore there exists $\epsilon > 0$ such that
$(x - \epsilon, x] \subseteq U_i$.
But $U_i \subseteq V$, therefore $(x - \epsilon, x] \subseteq V$, a contradiction.
\end{enumerate}
\end{proof}
\end{document}