-
Notifications
You must be signed in to change notification settings - Fork 2
/
analysis--berkeley-202a-hw10.tex
350 lines (288 loc) · 13.2 KB
/
analysis--berkeley-202a-hw10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
\section{Math 202A - HW10 - Dan Davison - \texttt{[email protected]}}
\begin{verbatim}
12.3. You have all the tools you need to prove the converse; try using g. (-4)
Aidan Backus, Nov 18 at 6:18pm
Review 1: You need to prove that your formula for \limsup_{n \to \infty} A_n is valid. (-1) It is not true
that a summable sequence x_i has compact support; x_i = i^{-2} is a counterexample. This invalidates your
bound on \mu(E) and hence your proof of the Borel-Cantelli lemma. (-3) Aidan Backus, Nov 21 at 1:24pm
12.3) 6 12.4) 0
Ian Francis, Nov 24 at 5:07am
Review 2: You are correct to guess that f bar, a continuous function with compact support, is not necessarily
lipschitz. Try \sqrt{x} on [0,1]. It's continuous with compact support, but not Lipschitz. However, you don't
need Lipschitz. Simply note that the result holds for f bar (using uniform convergence or DCT or whatever),
and then use the triangle inequality and translation invariance of Lebesgue measure to get the result for f.
(-6) Ian Francis, Dec 2 at 8:02pm
\end{verbatim}
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw10-7127.png}
\end{mdframed}
\begin{verbatim}
Review 1: You need to prove that your formula for \limsup_{n \to \infty} A_n is valid. (-1) It is not true
that a summable sequence x_i has compact support; x_i = i^{-2} is a counterexample. This invalidates your
bound on \mu(E) and hence your proof of the Borel-Cantelli lemma. (-3)
\end{verbatim}
\begin{enumerate}[label=(\alph*)]
\item ~\\
The set $E$ whose elements belong to infinitely many of the sets $A_i$ is
\begin{align*}
E = \bigcap_{i=1}^\infty \bigcup_{j=i}^\infty A_j =: \limsup_{i \to \infty} A_i.
\end{align*}
\begin{claim*}
If $\sum_i \mu(A_i) < \infty$ then $\mu\(E\) = 0$.
\end{claim*}
\begin{proof}
Since $\sum_{i=1}^\infty \mu(A_i) < \infty$ we see that only finitely many of the $A_i$ have $\mu(A_i) > 0$.
Let $N$ be such that $\mu(A_i) = 0$ for all $i \geq N$.
Note that
\begin{align*}
E = \bigcap_{i=1}^\infty \bigcup_{j=i}^\infty A_j \subseteq \bigcup_{j=N}^\infty A_j,
\end{align*}
therefore by monotonicity of measure
\begin{align*}
\mu(E) \leq \mu\(\bigcup_{j=N}^\infty A_j\) \leq \sum_{j=N}^\infty \mu(A_j) = 0.
\end{align*}
\end{proof}
\item ~\\
We define a sequence of sets $A_1, A_2, \ldots \subseteq [0, 1)$ as follows: $x \in [0, 1)$ is an element
of $A_n$ if each of the $10$ digits occurs exactly $n$ times in the first $10n$ digits of the decimal expansion
of $x$.
$A$ is defined to be the set whose elements are in infinitely many of the $A_n$. Therefore
\begin{align*}
A = \bigcap_{i=1}^\infty \bigcup_{j=i}^\infty A_j.
\end{align*}
\begin{claim*}
The set $A$ is Lebesgue measurable.
\end{claim*}
\begin{proof}
We define the $i$-th decadic interval for digit $k$ at rank $m$ to be the following interval containing
numbers whose decimal expansion has a $k$ in the $m$-th position, where we choose the representation ending
in $0$s where there is a choice:
\begin{align*}
I_{m, k, i} := \Bigg[\frac{10i + k}{10^m}, \frac{10i + k + 1}{10^m}\Bigg).
\end{align*}
% Let $B_{m, k}$ be the set of all numbers in $[0, 1)$ whose base-$K$ expansion has a $k$ in the $m$-th
% position. At rank $m$ there are $K^m$ $K$-adic intervals each of length $K^{-m}$ and we have
% \begin{align*}
% B_{m, k} = \bigcup_{i=0}^{K^{m-1} - 1} I_{m, k, i}.
% \end{align*}
% Thus, for example, in base 10, the numbers with a $7$ in the 2nd digit of their expansion are
% \begin{align*}
% B_{2, 7}
% &= \bigcup_{i=0}^{9} \Bigg[\frac{10i + 7}{100}, \frac{10i + 7 + 1}{100}\Bigg) \\
% &= \Bigg[\frac{7}{100}, \frac{8}{100}\Bigg) \cup \Bigg[\frac{17}{100}, \frac{18}{100}\Bigg) \cup \cdots \Bigg[\frac{97}{100}, \frac{98}{100}\Bigg).
% \end{align*}
Recall our definition of $A_n$ as the set whose elements $x \in [0, 1)$ have the property that each of the
digits $0, 1, \ldots, 9$ occur exactly $n$ times in the first $10n$ digits of the decimal expansion.
Let $\mc I = \{I_{m, k, i} ~:~ m \geq 1, 0 \leq k < 10, i \in \N\}$ be the set of all decadic intervals at any
rank. Let $g:\mc I \to \N$ be defined by
\begin{align*}
g(I_{m, k, i}) = \text{~the number of occurrences of $k$ in positions $1, \ldots, m$ for $x \in I_{m, k, i}$}.
\end{align*}
Note that each decadic interval at rank $m$ is a subset of some decadic interval at rank $m-1$. I.e. for
all $m, k, i$ we have $I_{m+1, k, i} \subset I_{m, k', i'}$ for some $k', i'$. Therefore, when considering a
single interval $I_{m, k, i}$ at rank $m$, the sequence of digits at positions $1, \dots, m-1$ is the same
for all $x \in I_{m, k, i}$, and we see that $g$ is well-defined.
Thus we have
\begin{align*}
A_n = \bigcap_{k=0}^{9} ~~ \bigcup_{\substack{i\in \{0, \ldots, 10^{10n} - 1\}\\g(I_{10n, k, i}) = n}} I_{10n, k, i}.
\end{align*}
$A_n$ is therefore in the Borel $\sigma$-algebra, since it can be written using countable (in fact finite)
intersections and unions of intervals. Therefore $A_n$ is Lebesgue measurable.
Therefore
\begin{align*}
A = \bigcap_{i=1}^\infty \bigcup_{j=i}^\infty A_j
\end{align*}
is also in the Borel $\sigma$-algebra, since it can be written using countable intersections and unions of
intervals, and therefore also Lebesgue measurable.
\end{proof}
~\\
\item ~\\
\begin{claim*}
The Lebesgue measure of $A$ is zero.
\end{claim*}
\begin{proof}
Let $\mu$ be Lebesgue measure. We will show that $\sum_{n=1}^\infty \mu(A_n) < \infty$. The result then
follows from part (a) above.
We may view $\mu$ as a uniform probability measure, since $\mu([0, 1)) = 1$. The set $A_n$ then corresponds
to the event that a sample of size $10n$ drawn uniformly with replacement from the set $\{0, 1, \ldots, 9\}$
contains $n$ copies of each digit. A combinatorial argument shows that the probability of this event is equal
to
\begin{align*}
\mu(A_n) = P(A_n)
&= \frac{\prod_{i=1}^{10} {in \choose n}}{10^{10n}}.
\end{align*}
(The denominator corresponds to the fact that there are $10^{10n}$ ways of drawing a sample of size $10n$
uniformly with replacement from the set $\{0, 1, \ldots, 9\}$; the numerator corresponds to the fact that
there are ${10n \choose n}$ ways to choose the $n$ slots in which the $n$ copies of the digit $0$ go, then
there are ${9n \choose n}$ ways to choose the $n$ slots in which the $n$ copies of the digit $1$ go, and so
on.)
Simplifying this expression, we obtain
\begin{align*}
\mu(A_n)
&= \frac{1}{10^{10n}}\prod_{i=1}^{10}\frac{{(in)!}}{n!(in - n)!} \\
% &= \frac{1}{10^{10n}n!}\prod_{i=1}^{10}\frac{{(in)!}}{((i - 1)n)!} \\
&= \frac{1}{10^{10n}n!}\prod_{i=1}^{10} (in)(in -1)(in - 2)\cdots(in - n + 1) \\
&= \frac{n^{10}}{10^{10n}n!}\prod_{i=1}^{10} (i)(i -1/n)(i - 2/n)\cdots(i - 1 + 1/n).
% &< \frac{1}{10^{10n}n!}\prod_{i=1}^{10} (in)^n \\
% &= \frac{n^n}{10^{10n}n!}\prod_{i=1}^{10} i^n \\
% &= \frac{n^n}{n!} \frac{3628800^n}{10^{10n}} \\
% &< \frac{n^n}{1} \frac{3628800^n}{10^{10n}} \\
\end{align*}
The ratio test confirms that the series $\sum_{n=1}^\infty \mu(A_n)$ converges:
\begin{align*}
&\lim_{n\to\infty} \Bigg|\frac{(n+1)^{10}\prod_{i=1}^{10} (i)(i -\frac{1}{(n+1)} )\cdots(i - 1 +\frac{1}{(n+1)} )}{10^{10(n+1)}(n+1)!} \frac{10^{10n}n!}{n^{10}\prod_{i=1}^{10} (i)(i -\frac{1}{n} )\cdots(i - 1 +\frac{1}{n} )}\Bigg| \\
= &10^{-10}\lim_{n\to\infty} \frac{\prod_{i=1}^{10} (i)(i -\frac{1}{(n+1)} )\cdots(i - 1 +\frac{1}{(n+1)} )}{\prod_{i=1}^{10} (i)(i -\frac{1}{n} )\cdots(i - 1 +\frac{1}{n} )} \frac{(n+1)^{9}}{n^{10}} \\
= &10^{-10}\frac{\prod_{i=1}^{10} (i)(i )\cdots(i - 1 )}{\prod_{i=1}^{10} (i)(i )\cdots(i - 1 )} \cdot 0 \\
= &0.
\end{align*}
Thus $\sum_{n=1}^\infty \mu(A_n) < \infty$ and from part (a) it follows that $\mu(A) = 0$.
\end{proof}
\end{enumerate}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw10-5e9e.png}
\end{mdframed}
\begin{verbatim}
Review 2: You are correct to guess that f bar, a continuous function with compact support, is not necessarily
lipschitz. Try \sqrt{x} on [0,1]. It's continuous with compact support, but not Lipschitz. However, you don't need
Lipschitz. Simply note that the result holds for f bar (using uniform convergence or DCT or whatever), and then
use the triangle inequality and translation invariance of Lebesgue measure to get the result for f. (-6)
\end{verbatim}
\begin{proof}
[incomplete]
Let $h_1, h_2, ...$ be a sequence converging to $0$ from above, and define
\begin{align*}
g_n(x) := f(x + h_n) - f(x).
\end{align*}
Note that $g_n \to 0$ pointwise as $h \to 0$ and that $g_n$ is the difference of two integrable functions and
therefore integrable. We must show that
\begin{align*}
\limninf \int |g_n| = 0.
\end{align*}
Suppose $f$ is Lipschitz continuous with compact support, such that for all $x, x' \in \R$ we
have $|f(x') - f(x)| \leq M|x' - x|$. Let $A = \{x \in \R ~:~ |f(x)| > 0 \}$. Then the result follows from
the dominated convergence theorem: $|g_n|$ is bounded above by $Mh_n\ind_A$ and therefore
\begin{align*}
\limninf \int |g_n| = \int \limninf |g_n| = \int 0 = 0.
\end{align*}
Let $\eps > 0$. We know (hint from @kshitij in Slack) from the approximation theorem Bass 8.4 that there
exists a continuous function $\bar f$ with compact support such that
\begin{align*}
\int |f - \bar f| < \eps.
\end{align*}
I think that to complete this proof I need to do something similar to the following:
\begin{enumerate}
\item Show that $\bar f$ is Lipschitz
\item Show that, because $f$ and $\bar f$ are close in the sense that $\int |f - \bar f| < \eps$, the result
holds for $f$ as well as $\bar f$.
\end{enumerate}
Since $\bar f$ is continuous with compact support there exists $B > 0$ such that $|\bar f| \leq B$.
However I don't think it's true that $\bar f$ is Lipschitz continuous and I'm not sure how to proceed.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw10-551e.png}
\end{mdframed}
\begin{verbatim}
12.3. You have all the tools you need to prove the converse; try using g.
\end{verbatim}
\begin{proof}
Let $X = P \cup N$ be a Hahn decomposition of $X$, such that $P$ is a $\mu$-positive set and $N$ is
a $\mu$-negative set. Then
\begin{align*}
|\mu|(A) =\int_{A\cap P} 1 \dmu + \int_{A \cap N} -1 \dmu.
\end{align*}
Let $\ms F = \big\{f: X \to [-1, 1] ~: ~ f \text{~measurable} \big\}$ and define $g \in \ms F$ by
\begin{align*}
g(x) =
\begin{cases}
1 & x \in P \\
-1 & x \in N.
\end{cases}
\end{align*}
Then
\begin{align*}
|\mu|(A) = \int_A g \dmu = \Bigg|\int_A g \dmu\Bigg|.
\end{align*}
Let $f \in \ms F$ where $f \neq g$ and note that
\begin{align*}
-\int_{A \cap N} g \dmu \leq \int_{A \cap N} f \dmu \leq \int_{A \cap N} g \dmu,
\end{align*}
and
\begin{align*}
-\int_{A \cap P} g \dmu \leq \int_{A \cap P} f \dmu \leq \int_{A \cap P} g \dmu.
\end{align*}
Therefore
\begin{align*}
\Big|\int_A f \dmu\Big|
&= \Big|\int_{A \cap P} f \dmu + \int_{A \cap N} f \dmu\Big| \\
&\leq \Big|\int_{A \cap P} f \dmu\Big| + \Big|\int_{A \cap N} f \dmu\Big| \\
&\leq \Big|\int_{A \cap P} g \dmu\Big| + \Big|\int_{A \cap N} g \dmu\Big| \\
&= \Big|\int_{A} g \dmu\Big| \\
&= |\mu|(A).
\end{align*}
Therefore $|\mu|(A)$is an upper bound for $\Big\{ \big|\int_A f \dmu\big| : |f| \leq 1 \Big\}$.
\red{TODO} we must also show that $|\mu|(A)$ is the least upper bound.
Therefore
\begin{align*}
\Big|\int_{A} g \dmu\Big| = \sup\Bigg\{ \Big|\int_A f \dmu\Big| : |f| \leq 1 \Bigg\}.
\end{align*}
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw10-8336.png}
\end{mdframed}
\begin{proof}
[incomplete]
% Recall that
% \begin{align*}
% \lambda^+(A) &= \lambda(A \cap P) \\
% \lambda^-(A) &= -\lambda(A \cap N),
% \end{align*}
% where $X = P \cup N$ is a Hahn decomposition of $X$.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw10-0220.png}
\end{mdframed}
Recall that
\begin{align*}
\mu^+(A) &= \mu(A \cap P) \\
\mu^-(A) &= -\mu(A \cap P),
\end{align*}
where $X = P \cup N$ is a Hahn decomposition of $X$.
Let $L = \{\mu(B) ~:~ B \in \mc A, B \subset A\}$.
Let $B \in \mc A$ and $B \subset A$. Then
\begin{align*}
B = \((A \cap P) \cap B\) \cup \((A \cap N) \cap B\),
\end{align*}
and this is a union of disjoint sets.
\begin{claim*}
$\mu^+(A) = \sup \{\mu(B) ~:~ B \in \mc A, B \subset A\}$
\end{claim*}
\begin{proof}
[incomplete]
Using the disjoint union from above we have
\begin{align*}
\mu(B)
&= \mu\((A \cap P) \cap B\) + \mu\((A \cap N) \cap B\) \\
&\leq \mu\((A \cap P) \cap B\) \\
&\leq \mu(A \cap P) \\
&= \mu^+(A).
\end{align*}
Therefore $\mu^+(A)$ is an upper bound for $L$.
Now suppose $l$ is another upper bound for $L$.
... \red{TODO}
\end{proof}
\begin{claim*}
$\mu^-(A) = -\inf \{\mu(B) ~:~ B \in \mc A, B \subset A\}$
\end{claim*}
\begin{proof}
[incomplete]
Using the disjoint union from above we have
\begin{align*}
\mu(B)
&= \mu\((A \cap P) \cap B\) + \mu\((A \cap N) \cap B\) \\
&\geq \mu\((A \cap N) \cap B\) \\
\end{align*}
\end{proof}