-
Notifications
You must be signed in to change notification settings - Fork 2
/
analysis--berkeley-202a-hw06.tex
479 lines (327 loc) · 17.7 KB
/
analysis--berkeley-202a-hw06.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
\section{Math 202a - HW6 - Dan Davison - \texttt{[email protected]}}
% 5. Your proof of (3) is morally correct (though I can't parse the sentence before "Therefore f is continuous.") though missing some details (WTS f is linear on a dense set); your intution that (1), (2) should follow from (3) is also correct, but need to be filled in. (-4) You should also check that a suitable a exists. (-2)
% Aidan Backus, Oct 20 at 6:59pm
% 6.2) Your intuition is correct. However, I don't think you strategy of considering complements will really help much. (-4)
% Ian Francis, Oct 31 at 11:25am
% 1. 10 4. 10 5. 4 6. 6
% Ian Francis, Oct 31 at 11:36am
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw06-ab56.png}
\end{mdframed}
\begin{proof}
Let $a \in \R$. Define $q_i$ to be the number formed by truncating the decimal expansion of $a$ at the $i$-th
digit. Then $q_1, q_2, \ldots \in \Q$ is a sequence of rationals with $\lim_{i \to \infty} q_i = a$. Therefore
\begin{align*}
\lim_{i \to \infty} \{x ~:~ f(x) > q_i\} = \{x ~:~ f(x) > a\},
\end{align*}
and hence
\begin{align*}
\{x ~:~ f(x) > a\} = \bigcup_{i=1}^\infty \{x ~:~ f(x) > q_i\}.
\end{align*}
Therefore $\{x ~:~ f(x) > a\}$ is a countable union of elements of $\mc A$, for all $a \in \R$. Therefore $f$
is $\mc A$-measurable.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw06-927a.png}
\end{mdframed}
\begin{proof}
Let $\mc A$ be the Borel $\sigma$-algebra on $(0, 1)$ and for every $x \in (0, 1)$ let $r_x > 0$ be such
that $f$ and $g_x$ agree on $(x - r_x, x + r_x) \cap (0, 1)$, and $g_x$ is Borel-measurable.
We must show that $\{x ~:~ f(x) > y\} \in \mc A$ for all $y \in \R$.
Let $y \in \R$ and let $q_1, q_2, \ldots \in \Q \cap (0, 1)$ be an enumeration of the rationals in $(0, 1)$.
Define $U_{a} := \{x ~:~ g_{a}(x) > y\} \cap (a - r_{a}, a + r_{a})$. Note that $U_a$ is a set of real
numbers $x$ near $a$ for which we know that $f(x) > y$.
We claim that $\{x ~:~ f(x) > y\} = \bigcup_{i=1}^\infty U_{q_i} \in \mc A$.
Let $w = \inf \{r_{q_i} ~:~ i \in \N \}$.
To prove the forwards inclusion, let $b \in \{x ~:~ f(x) > y\}$, and let $q \in (b - w, b + w) \cap \Q$. Note
that $b \in (q - r_q, q + r_q)$ and therefore $g_q(b) = f(b) > y$. Therefore $b \in U_q$, proving the
forwards inclusion.
To prove the reverse inclusion, let $b \in \bigcup_{i=1}^\infty U_{q_i}$. Then $b \in U_q$ for
some $q \in \{q_1, q_2, \ldots\}$. Therefore $f(b) > y$.
Finally, note that $U_a$ is the intersection of two Borel-measurable sets and hence is Borel-measurable.
Therefore $\bigcup_{i=1}^\infty U_{q_i}$ is Borel-measurable.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw06-aaf5.png}
\end{mdframed}
\begin{proof}
Define $g(x) = \lim \inf_{n \to \infty} f_n(x)$ and $h(x) = \lim \sup_{n \to \infty} f_n(x)$. Note that $g$
and $h$ are both measurable by Bass proposition 5.8.
Note also that $h - g = h + (-g)$ is a measurable function, by Bass proposition 5.7.
We have
\begin{align*}
A
&= \{x ~:~ \lim_{n\to\infty} f_n(x) \text{~exists~}\} \\
&= \{x ~:~ \lim \inf_{n \to \infty} f_n(x) = \lim \sup_{n \to \infty} f_n(x) \} \\
&= \{x ~:~ (h - g)(x) = 0\} \\
&= \{x ~:~ (h - g)(x) \geq 0\} \cap \{x ~:~ (h - g)(x) \leq 0\},
% &= (h - g)^{-1}(\{0\})
\end{align*}
and thus is measurable, since it's the intersection of two measurable sets.
\end{proof}
\begin{comment}
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw06-b799.png}
\end{mdframed}
\begin{proof}
Let $f: X \to (0, \infty)$ be a measurable function, and let $g(x) = 1/f(x)$.
Since $f$ is measurable, there exists a $\sigma$-algebra $\mc A$ such that $f^{-1}((y, \infty)) \in \mc A$
for all $y > 0$.
Let $h(x) = 1/x$. Then $g = h \circ f$.
Fix $y \in (0, \infty)$ and let $U = h^{-1}((y, \infty)) \subseteq (0, \infty)$. Since $h$ is
continuous, $U$ is open.
We want to show that $g^{-1}((y, \infty)) \in \mc A$. We have
\begin{align*}
g^{-1}((y, \infty)) = f^{-1}(h^{-1}((y, \infty))) = f^{-1}(U).
\end{align*}
So what we want to show is that $f^{-1}(U) \in \mc A$, where $U \subseteq (0, \infty)$ is open.
Write $U = \bigcup_{i=1}^\infty (a_i, b_i)$ where $(a_1, b_1), (a_2, b_2), \ldots \subseteq (0, \infty)$ is a
countable pairwise disjoint collection of open intervals.
Note that $f^{-1}(U) = \bigcup_{i=1}^\infty f^{-1}((a_i, b_i))$.
Note also that $(a, b) = (a, \infty) \setminus (b, \infty)$ and therefore
that $f^{-1}((a, b)) = f^{-1}((a, \infty)) \setminus f^{-1}((b, \infty))$.
Thus we have
\begin{align*}
f^{-1}(U)
&= \bigcup_{i=1}^\infty \Big(f^{-1}((a, \infty)) \setminus f^{-1}((b, \infty))\Big) \\
&= \bigcup_{i=1}^\infty \Big(f^{-1}((a, \infty)) \cap \big(f^{-1}((b, \infty))\big)^c\Big) \\
&\in \mc A,
\end{align*}
since this is a countable union of intersections of two sets that are both in $\mc A$ (one by definition, and
one as the complement of a set that is in $\mc A$ by definition).
\end{proof}
\end{comment}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw06-90b1.png}
\end{mdframed}
\begin{proof}
It suffices to show that $f^{-1}\((-\infty, y)\)$ is open for all $y \in \R$, since
then $f^{-1}\((-\infty, y)\)$ is Borel-measurable, and therefore Lebesgue-measurable.
% We know that there is a theorem concerning continuous functions on metric/topological spaces: $f:\R \to \R$
% is
% continuous if and only
% if $f^{-1}(U)$ is open for every open subset $U \subseteq \R$.
% We want to prove the reverse direction of this, but assuming upper semicontinuity only. In other words, we
% want to prove that (upper semicontinuity) implies (preimage of $(-\infty, q)$ is open) for all $q \in \R$.
% We follow the proof of the standard theorem (see Kevin McGerty's Oxford A2 Metric Spaces notes) but
% substituting upper semicontinuity.
So, fix $y \in \R$ and let $a \in f^{-1}\((-\infty, y)\)$. It suffices to show that $f^{-1}\((-\infty, y)\)$
includes a neighborhood of $a$, since then it contains a neighborhood of all its points and therefore is
open as required.
Since $f$ is upper semicontinuous there exists $\eps > 0$ and $\delta > 0$ such
that $(a - \delta, a + \delta) \subset f^{-1}\((-\infty, f(a) + \eps)\)$.
Note that $f(a) \in (-\infty, y)$.
Therefore $(a - \delta, a + \delta) \subset f^{-1}\((-\infty, y + \eps)\)$.
Since $\eps$ is arbitrary we have that $(a - \delta, a + \delta) \subseteq f^{-1}\((-\infty, y)\)$, and
therefore that $f^{-1}\((-\infty, y)\)$ includes a neighborhood of $a$, as required.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw06-7769.png}
\end{mdframed}
Note that $f(0) = 0$, since $f(0) = f(0 + 0) = 2f(0)$, of which the only solution is $f(0) = 0$.
For $a \in \R$ define $g_a(x) := f(x) - ax$ so that $\Lambda_a = \{x \geq 0 ~:~ g_a(x) \geq 0\}$.
Note that $g_a$ is measurable for all $a \in \R$, and therefore $\Lambda_a$ is Lebesgue measurable for
all $a \in \R$. To see this, for $a \in \R$ define $h_a(x) = -ax$ so that $g_a = f + h_a$. Then $h_a$ is
clearly Lebesgue measurable for all $a \in \R$, and therefore so also is $g_a(x)$ (by Bass proposition 5.7
which states that a function produced via elementary operations on measurable functions is measurable).
\begin{proof}
Fix $\eps > 0$ and let $I = (a, a + \eps)$.
Note that $\{y - y' ~:~ y, y' \in I\} = (-\eps, \eps)$.
Note also that $f^{-1}(y' - y) = f^{-1}(y') - f^{-1}(y)$. To see this, note
that $f^{-1}(y) + \big[f^{-1}(y') - f^{-1}(y)\big] = f^{-1}(y')$. Therefore we have
\begin{align*}
f\Big(f^{-1}(y) + \big[f^{-1}(y') - f^{-1}(y)\big]\Big) &= f\big(f^{-1}(y')\big) \\
f\Big(f^{-1}(y)\Big) + f\Big(\big[f^{-1}(y') - f^{-1}(y)\big]\Big) &= f\big(f^{-1}(y')\big) \\
f\Big(\big[f^{-1}(y') - f^{-1}(y)\big]\Big) &= y' - y \\
f^{-1}(y') - f^{-1}(y) &= f^{-1}(y' - y).
\end{align*}
Therefore
\begin{align*}
f^{-1}((-\eps, \eps))
&= \Big\{f^{-1}(y - y') ~:~ y, y' \in I\Big\} \\
&= \Big\{f^{-1}(y) - f^{-1}(y') ~:~ y, y' \in I\Big\} \\
&= \Big\{x - x' ~:~ x, x' \in f^{-1}(I)\Big\}.
\end{align*}
Since $f^{-1}(I)$ we have from HW5 Q3 that there exists $\delta > 0$ such
that $(-\delta, \delta) \subseteq f^{-1}((-\eps, \eps))$.
Therefore $f$ is continuous.
(3) Since $f$ is additive and continuous, it follows that it is linear.
(1), (2) follow from (3). And from the fact that $f(0) = 0$, since $f(0) = f(0 + 0) = 2f(0)$, of which the only solution is $f(0) = 0$.
(I know that needs more justification so I do expect to lose points there; I just ran out of time because I
was struggling for days with Q5 and Q6!)
\end{proof}
% 5. Your proof of (3) is morally correct (though I can't parse the sentence before "Therefore f is continuous.")
% though missing some details (WTS f is linear on a dense set); your intution that (1), (2) should follow from
% (3) is also correct, but need to be filled in. (-4) You should also check that a suitable a exists. (-2)
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw06-9bc5.png}
\end{mdframed}
% \begin{intuition*}
% A point is in $A^*$ if it is reached starting from any point in $A$.
% A point is in $(A^*)^c$ iff it is never reached, starting from any point in $A$.
% If any point in $A$ reaches all points of the circle, then $\mu(A^*) = 1$.
% \end{intuition*}
% \begin{lemma*}
% Let $E \subseteq \R$ be Lebesgue measurable and fix $\alpha \in (0, 1)$. Then there exists an open
% interval $I_i$ such that $\mu(E \cap I_i) > \alpha \mu(I_i)$.
% \end{lemma*}
% Let $\mu$ denote Lebesgue measure.
% Note that, since $\tau_r$ is a translation on the circle, it follows from translation-invariance of measure
% that $\tau_r$ is a measure-preserving transformation, i.e. that
% \begin{align*}
% \mu(\tau_r^{-1}(A)) = \mu(A).
% \end{align*}
% Let $\Omega = [0, 1)$. Then $(\Omega, \mu, \tau_r)$ is a dynamical system.
\begin{enumerate}
\item
\begin{claim*}
Let $r \in [0, 1) \cap \Q$. Then there exists $A \subset [0, 1)$ of positive Lebesgue measure such that $0 < \mu(A^*) < 1$.
\end{claim*}
\begin{proof}
Let $r = p/q \in \Q$, where $p, q \in \Z$ are coprime.
Let $I_i = [\frac{i}{2q}, \frac{i+1}{2q})$ and define $A = \bigcup_{i=0}^{2q-1} I_i$. We claim that $A$ has
the required properties.
Clearly $A$ has positive measure, since $\mu(A) = q \cdot \frac{1}{2q} = \frac{1}{2}$.
Next we need to show that $0 < \mu(A^*) < 1$, where $A^* := \bigcup_{n=0}^\infty \tau^n(A)$.
Informally, what we want to show is that the $I_i$ map to each other under $\tau$.
We have
\begin{align*}
\tau^n(I_i)
&= \Big[\big(\frac{i}{2q} + \frac{np}{q}\big) \mod 1, \big(\frac{i+1}{2q} + \frac{np}{q}\big) \mod 1 \Big) \\
&= \Big[\frac{i + 2np}{2q} \mod 1, \frac{i + 1 + 2np}{2q} \mod 1\Big) \\
&= \Big[\frac{(i + 2np) \mod 2q}{2q}, \frac{(i + 1 + 2np) \mod 2q}{2q}\Big) \\
&= I_{(i + 2np) \mod 2q} \\
&\subseteq A.
\end{align*}
Therefore $A^* := \bigcup_{n=0}^\infty \tau^n(A) \subseteq A$ and
hence $\mu(A^*) \leq \mu(A) = \frac{1}{2}$. Since $A = \tau^0(A) \subset A^*$ we have
\begin{align*}
0 < \mu(A^*) < 1,
\end{align*}
as required.
\end{proof}
\item
\begin{claim*}
Let $r \in [0, 1) \setminus \Q$. Then $\mu(A^*) = 1$ for all $A \subset [0, 1)$.
\end{claim*}
\begin{intuition*}
If $A$ includes an interval then the result is true. Furthermore, the result is intuitively plausible
if $A$ does not include an interval, as follows. We know that $A$ includes a locally dense region; the
iterations of the dynamical system place many copies of this dense region around the circle such that every
point of the circle is close to infinitely many copies of the dense region, each translated by small
amounts from each other. Thus it is certainly plausible that the amount of space left uncovered is
negligible.
\end{intuition*}
\begin{proof}
(Incomplete)
Let $r \in [0, 1) \setminus \Q$ and let $A \subseteq [0, 1)$ have positive measure.
For any subset $X \subseteq [0, 1)$ let $X^* \subseteq [0, 1)$ denote the union $\bigcup_{n=0}^\infty \tau^n(X)$.
We will show that $\mu\((A^*)^c\) = 0$.
Note that
\begin{align*}
\big(A^{*}\big)^c = \bigcap_{n=0}^\infty \big(\tau^n(A)\big)^c.
\end{align*}
Let $\eps > 0$.
Then there exists an open interval $I$ such that $\mu(A \cap I) > (1 - \eps) \mu(I)$, or equivalently
\begin{align*}
\mu(I \setminus A) < \eps\mu(I).
\end{align*}
Let $d = \mu(I)$, and fix an arbitrary interval $J \subset [0, 1)$ of length $d$.
We will show that $\mu(J \setminus A^*) < \epsilon d$. Since $J$ is an arbitrary interval, it follows that
(Incomplete)
\end{proof}
% \begin{proof}
% Let $r \in [0, 1) \setminus \Q$ and let $A$ be a $\tau_r$-invariant set with positive measure.
% First suppose $A$ includes an interval $I$. Then $A^* = [0, 1)$. This is true because (a) the orbits are
% dense, so for any given point $x \in [0, 1)$ we can find $x_0 \in A$ whose orbit passes close to $x$. Then
% (b) we can look at how close it got, and find another starting point in our interval whose orbit hits $x$
% exactly.
% Suppose $A$ includes an interval $I = (a, b)$. We claim that $A^* = [0, 1)$.
% Proof: Let $y \in [0, 1)$ and let $\eps < \mu(I)$. Since $\orb(a)$ is dense, there exists $x \in \orb(a)$
% such that $|x - y| < \eps$.
% Now suppose $A$ includes no interval. We want to show that $\mu(A^*) = 1$.
% For any subset $X \subseteq [0, 1)$ let $X^*$ denote the union $\bigcup_{n=0}^\infty \tau^n(X)$.
% Since $I$ is an interval, we have $I^* = [0, 1)$ and $\mu(I^*) = 1$.
% We claim that $\mu((A \cap I)^*) = 1$. This implies the desired result
% since $(A \cap I)^* \subseteq A^* \subseteq [0, 1)$.
% Let $\eps > 0$.
% Then there exists an open interval $I$ such that $\mu(A \cap I) > (1 - \eps) \mu(I)$, or equivalently:
% \begin{align*}
% \mu(I \setminus A) < \eps\mu(I).
% \end{align*}
% Recall that we want to show that $\mu((A \cap I)^*) = 1$.
% We have the non-disjoint union
% \begin{align*}
% I^* = (A \cap I)^* \cup (I \setminus A)^*.
% \end{align*}
% Therefore
% \begin{align*}
% \mu(I^*) = 1 \leq
% \end{align*}
% Therefore we have $\mu(A \cap I) = \mu(I) - \mu(I \setminus A) > (1 - \eps)\mu(I)$,
% We know that $\mu(\tau^k(A \cap I)) > (1 - \eps)\mu(I)$ by translation invariance.
% We want to show that
% We must use
% \begin{enumerate}
% \item $\mu(A^*) > 0$ -- this gives the interval theorem
% \item Every point has a non-periodic orbit which is dense
% \item Orbits are disjoint
% \item $A^*$ is invariant: $\tau(A^*) = A^*$
% \end{enumerate}
% We want to show that the set of points we don't hit exactly has measure $0$.
% \end{proof}
% \begin{lemma}
% Every $\tau_r$-invariant set with positive measure has Lebesgue measure one when $r$ is irrational.
% \end{lemma}
% \begin{proof}
% Let $r \in [0, 1) \setminus \Q$ and let $A$ be a $\tau_r$-invariant set with positive measure.
% First suppose $A$ includes an interval $I$. Then $A^* = [0, 1)$. This is true because (a) the orbits are
% dense, so for any given point $x \in [0, 1)$ we can find $x_0 \in A$ whose orbit passes close to $x$. Then
% (b) we can find another orbit that hits $x$ exactly.
% Now suppose $A$ includes no interval. We need to show that the set of points we don't hit exactly has
% measure 0.
% We must use
% \begin{enumerate}
% \item $A$ is invariant: $\tau(A) = A$
% \item $\mu(A) > 0$
% \item Every point has a non-periodic orbit which is dense
% \item Orbits are disjoint
% \end{enumerate}
% Then for all $\eps > 0$ there exists an open interval $I$ such that $\mu(A \cap I) > (1 - \eps) \mu(I)$.
% \end{proof}
% \begin{proof}
% Let $r \in [0, 1) \setminus \Q$ and let $A \subset [0, 1)$ have positive Lebesgue measure.
% Note that $A^*$ has positive measure since $A = \tau^0(A) \subset A^*$ hence $\mu(A) < \mu(A^*)$. Note also
% that $A^*$ is invariant under $\tau$, since
% \begin{align*}
% \tau^{-1}(A^*)
% &:= \{x ~:~ \tau(x) \in A^* \} \\
% &= \{x ~:~ \tau(x) \in \bigcup_{n=0}^\infty \tau^n(A) \} \\
% &= \bigcup_{n=0}^\infty \tau^n(A) \\
% &=: A^*.
% \end{align*}
% \end{proof}
\end{enumerate}
% One option would be to prove that $\tau_r$ is ergodic with respect to Lebesgue measure. Then,
% since $\tau^{-1}(A^*) = A^*$ we have that $\mu(A^*) = 0$ or $\mu(A^*) = 1$.
% But $A = \tau^0(A) \subset A^*$, therefore $\mu(A^*) \neq 0$. Therefore $\mu(A^*) = 1$.
% Then every point has a non-periodic orbit which is dense in $[0, 1)$.
% Let $A \subset [0, 1)$ have positive measure.
% Recall that every point in the circle has a periodic orbit when $r$ is rational.
% Let $f:[0, 1) \to \C$ be defined by $f(x) = e^{2\pi ixq}$.
% Note that $f$ is invariant under $\tau_r$, since we have
% \begin{align*}
% f(\tau_r(x)) =
% \begin{cases}
% e^{2\pi i (x + p/q)q} = e^{2\pi i (qx + p)} = e^{2\pi iqx}e^{2p\pi i} = f(x) ~~~~~~~~~~~~~~~~~~~~~x + a < 1, \\
% e^{2\pi i (x + p/q - 1)q} = e^{2\pi i (qx + p - q)} = e^{2\pi iqx}e^{2(p - q)\pi i} = f(x) ~~~~~~~~x + a \geq 1.
% \end{cases}
% \end{align*}
% Informally, $f$ is the location of a point that is moving around the unit circle with constant
% velocity $q$.
% Since $\tau_r$ is not ergodic for rational $r$,