-
Notifications
You must be signed in to change notification settings - Fork 2
/
analysis--berkeley-202a-hw04.tex
465 lines (386 loc) · 18.3 KB
/
analysis--berkeley-202a-hw04.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
\section{Math 202a - HW4 - Dan Davison - \texttt{[email protected]}}
% 1. 10/10 3. 10/10 5. 10/10 6. 10/10
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw04-f604.png}
\end{mdframed}
\begin{claim*}
$\mu$ is a measure.
\end{claim*}
\begin{proof}~\\
It is given that $\mu$ is non-negative and that $\mu(\emptyset) = 0$. We must prove that $\mu$ is countably
additive.
So let $B_1, B_2, \dots$ be a pairwise disjoint countable collection of subsets of $X$. We want to show
that $\mu(\bigcup_{i=1}^\infty B_i) = \sum_{i=1}^\infty \mu(B_i)$.
Define $A_j = \bigcup_{i \leq j} B_i$ for $j=1, 2, \ldots$, so that $A_1, A_2, \ldots$ is an increasing
sequence of sets. Note that $\bigcup_{i=1}^\infty B_i = \bigcup_{j=1}^\infty A_j$ therefore, by
hypothesis,
$\mu\big(\bigcup_{i=1}^\infty B_i\big) = \mu\big(\bigcup_{j=1}^\infty A_j\big) = \lim_{j\to\infty} \mu(A_j)$.
Now, from finite additivity we have
\begin{align*}
\mu(A_j) = \mu(\bigcup_{i \leq j} B_i) = \sum_{i\leq j} \mu(B_i),
\end{align*}
therefore
\begin{align*}
\mu\big(\bigcup_{i=1}^\infty B_i\big) = \lim_{j\to\infty} \sum_{i\leq j} \mu(B_i) = \sum_{i=1}^\infty \mu(B_i),
\end{align*}
as required.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw04-c187.png}
\end{mdframed}
\begin{proof}~\\
It is given that $\mu$ is non-negative and that $\mu(\emptyset) = 0$. In order to prove that $\mu$ is a
measure, we must prove that $\mu$ is countably additive.
Let $B_1, B_2, \ldots \in \mc A$ be a countable pairwise disjoint collection of sets. It is given that $\mu$
is finitely additive, so we have
\begin{align*}
\sum_{i=1}^\infty \mu(B_i) = \lim_{n\to\infty} \sum_{i=1}^n \mu(B_i) = \lim_{n\to\infty} \mu(\bigcup_{i=1}^n B_i).
\end{align*}
Therefore in order to prove countable additivity, it suffices to prove
\begin{align*}
\mu\big(\bigcup_{i=1}^\infty B_i \big) = \lim_{n\to\infty} \mu(\bigcup_{i=1}^n B_i).
\end{align*}
Let $Y = \bigcup_{i=1}^\infty B_i$ and define $S_n := \bigcup_{i=1}^n B_i$, so that the result we want to
prove is now
\begin{align*}
\mu(Y) = \lim_{n\to\infty} \mu(S_n).
\end{align*}
Note that the sequence $(Y \setminus S_1), (Y \setminus S_2), \ldots$ decreases to $\emptyset$,
therefore $\lim_{n\to\infty}\mu(Y \setminus S_n) = 0$. Note also that by finite additivity of $\mu$ we have,
for all $n \in \N$,
\begin{align*}
\mu(Y) = \mu(S_n) + \mu(Y \setminus S_n).
\end{align*}
Taking the limit as $n \to \infty$ we have
\begin{align*}
\mu(Y) = \lim_{n\to\infty} \mu(S_n),
\end{align*}
as required.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw04-b168.png}
\end{mdframed}
\begin{proof}~\\
$\emptyset$ is countable, therefore we have $\mu(\emptyset) = 0$ as required, and it remains to show
that $\mu$ is countably additive.
So let $B_1, B_2, \ldots$ be a pairwise disjoint countable collection of subsets of $X$. We want to show
that $\mu(\bigcup_{i=1}^\infty B_i) = \sum_{i=1}^\infty \mu(B_i)$.
% Consider $\bigcup_{i=1}^\infty B_i$. It could be uncountable, since the $B_i$ could be a countable partition
% of the entire set $X$. Could it also be countable? Yes, since the $B_i$ could be singletons. So we must
% handle both cases.
First suppose $\bigcup_{i=1}^\infty B_i$ is countable. Then no $B_i$ is uncountable. Therefore $\mu(B_i) = 0$
for all $i$ and we have
\begin{align*}
\sum_{i=1}^\infty \mu(B_i) = \sum_{i=1}^\infty 0 = 0 = \mu\big(\bigcup_{i=1}^\infty B_i\big),
\end{align*}
as required.
Next, suppose $\bigcup_{i=1}^\infty B_i$ is uncountable. We want to show
that $\sum_{i=1}^\infty \mu(B_i) = 1$. Equivalently, we want to show that exactly one of the $B_i$ is
uncountable.
Note that we have by hypothesis that either $B_i$ is countable or $B_i^c$ is countable, for all $i$. Clearly
some $B_i$ is uncountable or else we would
have $\sum_{i=1}^\infty \mu(B_i) = \sum_{i=1}^\infty 0 = 0 \neq \mu\big(\bigcup_{i=1}^\infty B_i\big)$.
Suppose for a contradiction that there exists $j \neq k$ such that $B_j$ and $B_k$ are uncountable. Note
that $B_j$ and $B_k$ are disjoint, therefore $B_k \subseteq B_j^c$. But $B_j^c$ is countable, therefore $B_k$
is countable; a contradiction. Therefore no such pair $j, k$ exists and we conclude that exactly one of
the $B_i$ is uncountable, as required.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw04-c88b.png}
\end{mdframed}
\begin{claim*}\label{claim-3-8-1}
$B \in \mc B$ if and only if there exists $A \in \mc A$ and $N \in \mc N$ such that $B = A \cup N$.
\end{claim*}
\begin{proof}~\\
Define $\mc B = \sigma(\mc A \cup \mc N)$ and let $\mc C$ be the collection of sets of the specified form,
i.e. $\mc C = \{A \cup N ~:~ A \in \mc A, N \in \mc N\}$. We want to show that $\mc B = \mc C$.
To show that $\mc C \subseteq \mc B$, let $A \in \mc A$ and $N \in \mc N$. Then $A \in \mc A \cup \mc N$,
therefore $A \in \sigma(\mc A \cup \mc N) =: \mc B$. Similarly $N \in \mc A \cup \mc N$,
therefore $N \in \sigma(\mc A \cup \mc N) =: \mc B$.
Let $C = A \cup N$ be an arbitrary element of $\mc C$. Since $\mc B$ is a $\sigma$-algebra and $A \in \mc B$
and $N \in \mc B$, we have $C \in \mc B$. Therefore $\mc C \subseteq \mc B$.
To show that $\mc B \subseteq \mc C$, first note that $\emptyset \in \mc N$,
therefore $\mc A = \{ A \cup \emptyset ~:~ A \in \mc A \} \subseteq \mc C$. Similarly $\emptyset \in \mc A$
implies that $\mc N \subset \mc C$. Therefore $\mc A \cup \mc N \subset \mc C$.
Next we will show that $\mc C$ is a $\sigma$-algebra. Since $\mc A \cup \mc N \subset \mc C$, it will then
follow that $\mc B := \sigma(\mc A \cup \mc N) \subseteq \sigma(\mc C) = \mc C$ as required.
Since $\emptyset \in \mc A$ and $\emptyset \in \mc N$, we have $\emptyset \in \mc C$.
Let $A \in \mc A$ and $N \in \mc N$. Then $(A \cup N)^C = A^c \cap N^c$. Since $A^c \in \mc A$
and $N^c \in \mc N$, we see that $(A \cup N)^C \in \mc C$ and thus that $\mc C$ is closed under complements.
It remains to show that $\mc C$ is closed under countable unions of pairwise disjoint collections. So
let $A_1, A_2, \ldots \in \mc A$ be pairwise disjoint and let $N_1, N_2, \ldots \in \mc N$ be pairwise
disjoint, and define $C_i = A_i \cup N_i$ for all $i$. Then
\begin{align*}
\bigcup_{i=1}^\infty C_i
&= \bigcup_{i=1}^\infty \big(A_i \cup N_i\big) \\
&= \lim_{n\to\infty} \bigcup_{i=1}^n \big(A_i \cup N_i\big) \\
&= \lim_{n\to\infty} \big(\bigcup_{i=1}^n A_i\big) \bigcup \big(\bigcup_{i=1}^n N_i \big) \\
&= \big(\bigcup_{i=1}^\infty A_i\big) \bigcup \big(\bigcup_{i=1}^\infty N_i \big).
\end{align*}
Since $\big(\bigcup_{i=1}^\infty A_i\big) \in \mc A$ and $\big(\bigcup_{i=1}^\infty N_i\big) \in \mc N$ we see that $\big(\bigcup_{i=1}^\infty C_i\big) \in C$ as required.
\end{proof}
\begin{lemma}[A measure is finitely sub-additive]\label{lemma-3-8-subadditivity}
Let $\mc A$ be a $\sigma$-algebra, let $A_1, A_2 \subseteq \mc A$ and let $\mu$ be a measure on $\mc A$.
Then $\mu(A_1 \cup A_2) \leq \mu(A_1) + \mu(A_2)$.
\end{lemma}
\begin{proof}~\\
Note that $A_1, (A_2 \setminus A_1), \emptyset, \emptyset, \ldots$ is a countable pairwise disjoint
collection with union equal to $A_1 \cup A_2$. Therefore, using countable additivity followed by
monotonicity,
\begin{align*}
\mu(A_1 \cup A_2)
&= \mu(A_1) + \mu(A_2 \setminus A_1) + 0 + \cdots \\
&\leq \mu(A_1) + \mu(A_2).
\end{align*}
\end{proof}
\begin{claim*}
Define $\bar{\mu}(B) = \mu(A)$ if $B = A \cup N$ with $A \in \mc A$ and $N \in \mc N$.
Then $\bar{\mu}(B)$ is uniquely defined for each $B \in \mc B$.
\end{claim*}
\begin{proof}~\\
Let $B \in \mc B$. We will show that $\bar\mu(B)$ is the same for all decompositions of the
form $B = A \cup N$ where $A \in \mc A$ and $N \in \mc N$.
So let $A, A' \in \mc A$ and $N, N' \in \mc N$ be such that $A \cup N = A' \cup N' = B$.
We must show that $\bar{\mu}(A \cup N) = \bar{\mu}(A' \cup N')$. This is equivalent to showing
that $\mu(A) = \mu(A')$.
Note that, since $N'$ is a null set, there exists $A_{N'} \in \mc A$ with $N' \subseteq A_{N'}$
and $\mu(A_{N'}) = 0$. Therefore we have
\begin{align*}
A
&\subseteq A' \cup N' \\
&\subseteq A' \cup A_{N'}.
\end{align*}
By monotonicity of $\mu$ we have $\mu(A) \leq \mu(A' \cup A_{N'})$. And by finite sub-additivity of $\mu$
(see lemma \eqref{lemma-3-8-subadditivity}) we have
\begin{align*}
\mu(A)
&\leq \mu(A') + \mu(\cup A_{N'}) \\
&= \mu(A') + 0 \\
&= \mu(A').
\end{align*}
Similarly, since $N$ is a null set, there exists $A_{N} \in \mc A$ with $N \subseteq A_{N}$
and $\mu(A_{N}) = 0$, and by an equivalent argument to the above (switch the primes on $A$ and $A'$, and
remove the prime from $N'$) we have $\mu(A') \leq \mu(A)$.
Therefore $\mu(A) = \mu(A')$ as required.
\end{proof}
\begin{claim*}
$\bar{\mu}$ is a measure on $\mc B$.
\end{claim*}
\begin{proof}~\\
Since $\emptyset \in \mc A$ and $\emptyset \in \mc N$ we
have $\bar\mu(\emptyset) = \bar\mu(\emptyset \cup \emptyset) = \mu(\emptyset) = 0$ as required. It remains to
show that $\bar\mu$ is countably additive on $\mc B$.
So let $B_1, B_2, \ldots \in \mc B$ be countable and pairwise disjoint, where for each $i$ these decompose
as $B_i = A_i \cup N_i$ with $A_i \in \mc A$ and $N_i \in \mc N$. Then
\begin{align*}
\bigcup_{i=1}^\infty B_i
&= \lim_{n\to\infty}\bigcup_{i=1}^n (A_i \cup N_i) \\
&= \lim_{n\to\infty} \Big(\bigcup_{i=1}^n A_i ~\cup~ \bigcup_{i=1}^n N_i\Big) \\
&= \bigcup_{i=1}^\infty A_i ~\cup~ \bigcup_{i=1}^\infty N_i.
\end{align*}
Note that $\bigcup_{i=1}^\infty A_i \in \mc A$, since $\mc A$ is a $\sigma$-algebra.
Note also that, since the $B_i$ are pairwise disjoint, so the $A_i$ are pairwise disjoint and also the $N_i$
are pairwise disjoint.
Using pairwise disjointness of the $N_i$ we see that $\bigcup_{i=1}^\infty N_i \in \mc N$, since
\begin{align*}
\mu\Big(\bigcup_{i=1}^\infty N_i\Big) = \sum_{i=1}^\infty \mu(N_i) = \sum_{i=1}^\infty 0 = 0.
\end{align*}
Thus we see that
\begin{align*}
\bar\mu\Big(\bigcup_{i=1}^\infty A_i ~\cup~ \bigcup_{i=1}^\infty N_i\Big) = \mu\Big(\bigcup_{i=1}^\infty A_i\Big),
\end{align*}
since the set on the left is of the form $A \cup N$ with $A \in \mc A$ and $N \in \mc N$.
Therefore, using pairwise disjointness of the $A_i$ and countable additivity of $\mu$, we have
\begin{align*}
\bar\mu\Big(\bigcup_{i=1}^\infty B_i\Big)
= \mu\Big(\bigcup_{i=1}^\infty A_i\Big)
= \sum_{i=1}^\infty \mu(A_i)
= \sum_{i=1}^\infty \bar\mu(B_i),
\end{align*}
as required.
\end{proof}
\begin{claim*}
$(X, \mc B, \bar{\mu})$ is complete.
\end{claim*}
\begin{proof}~\\
By definition, $(X, \mc B, \bar{\mu})$ is complete if all null sets with respect to $\bar\mu$ and $\mc B$ are
in $\mc B$.
Let $N_1$ be a null set with respect to $\bar\mu$ and $\mc B$. Then there exists $B_1 \in \mc B$
with $\bar\mu(B_1) = 0$ such that $N_1 \subseteq B_1$.
Since $B_1 \in \mc B$ it is of the form $B_1 = A_1 \cup N_2$ where $A_1 \in \mc A$ and $N_2 \in \mc N$. Therefore
$N_1 \subseteq A_1 \cup N_2$.
Furthermore, since $N_2 \in \mc N$, there exists $A_2 \in \mc A$ such that $N_2 \subseteq A_2$.
Therefore $N_1 \subseteq A_1 \cup A_2$.
But then $N_1 \in \mc N$, hence $N_1 \in \mc B := \sigma(\mc A \cup \mc N)$ as required.
\end{proof}
\begin{claim*}
$(X, \mc B, \bar{\mu})$ is the completion of $(X, \mc A, \mu)$.
\end{claim*}
\begin{proof}~\\
We've already shown that $(X, \mc B, \bar\mu)$ is complete, with $\mc A \subseteq \mc B$ and with $\bar{\mu}$
an extension of $\mu$. It remains to show that no smaller $\sigma$-algebra exists that satisfies those same
conditions.
So let $(X, \mc B', \mu')$ be complete, with $\mc A \subseteq \mc B$ and with $\mu'$ an extension of $\mu$.
We will show that $\mc B \subseteq \mc B'$.
Let $A \cup N \in \mc B$, where $A \in \mc A$ and $N \in \mc N$. We know that $N \in \mc B'$, since $\mc B'$
is complete. And we know that $A \in \mc B'$, since $A \in \mc A \subseteq \mc B'$.
Therefore $A \cup N \in \mc B'$, since $\mc B'$ is closed under finite unions.
Therefore $\mc B \subseteq \mc B'$, as required.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw-0d98.png}
\end{mdframed}
\begin{claim*}
$\mu^*$ is an outer measure.
\end{claim*}
\begin{proof}~\\
Note that $\mu^*(\emptyset) = 0$, since $\emptyset$ is covered by $\emptyset \in \mc A$ with $\mu(\emptyset) = 0$.
It remains to show that $\mu^*$ is countably sub-additive.
Let $A_1, A_2, \ldots \in X$. We must show that
\begin{align*}
\mu^*\Big(\bigcup_{i=1}^\infty A_i\Big) \leq \sum_{i=1}^\infty \mu^*(A_i).
\end{align*}
Note that $X \in \mc A$, therefore every $A_i$ is a subset of some set in $\mc A$.
Let $\epsilon > 0$. For $i \in \N$, let $C_i \in \mc A$ be such that $A_i \subseteq C_{i}$ with
\begin{align*}
\mu(C_{i}) < \mu^*(A_i) + \epsilon/2^i.
\end{align*}
(We can do this because $\mu^*(A_i)$ is defined as an infimum over covering sets; if for some $\epsilon_i$
there did not exist a $C_i$ such that $\mu(C_{i}) < \mu^*(A_i) + \epsilon_i$ then $\mu^*(A_i) + \epsilon_i$
would be a lower bound; a contradiction.)
Then we have
\begin{align*}
\mu^*\Big(\bigcup_{i=1}^\infty A_i\Big) \leq \sum_{i=1}^\infty \mu(C_{i}) < \sum_{i=1}^\infty \mu^*(A_i) + \epsilon.
\end{align*}
Since $\eps > 0$ is arbitrary, this implies
\begin{align*}
\mu^*\Big(\bigcup_{i=1}^\infty A_i\Big) \leq \sum_{i=1}^\infty \mu^*(A_i),
\end{align*}
as required.
\end{proof}
\begin{claim*}
Each set in $\mc A$ is $\mu^*$-measurable.
\end{claim*}
\begin{proof}~\\
Let $B \in \mc A$. We must show that
\begin{align*}
\mu^*(B) = \mu^*(B \cap E) + \mu^*(B \cap E^c),
\end{align*}
for every $E \subseteq X$.
So let $E \subseteq X$. Note that
\begin{align*}
\mu^*(B) \leq \mu^*(B \cap E) + \mu^*(B \cap E^c).
\end{align*}
is a statement of finite sub-additivity of $\mu^*$, which follows from countable sub-additivity of $\mu^*$
(form a countable sequence with $B_1 = B \cap E$, $B_2 = B \cap E^c$, and $B_i = \emptyset$ for $i > 2$ and
apply countable additivity), so what remains to prove is that
\begin{align*}
\mu^*(B) \geq \mu^*(B \cap E) + \mu^*(B \cap E^c).
\end{align*}
Let $\eps > 0$ and let $C \in \mc A$ be such that $B \subseteq C$ with
\begin{align*}
\mu(C_i) < \mu^*(B) + \eps.
\end{align*}
(As before, to see that we can do this note that if we could not, then $\mu^*(B) + \eps$ would be a lower
bound, contradicting $\mu^*(B)$ as the infimum.)
Then
\begin{align*}
\mu^*(B) + \eps
&> \mu(C) \\
&= \mu(C \cap E) + \mu(C \cap E^c) \\
&\geq \mu^*(B \cap E) + \mu^*(B \cap E^c).
\end{align*}
Since $\eps$ is arbitrary it follows that
\begin{align*}
\mu^*(B) \geq \mu^*(B \cap E) + \mu^*(B \cap E^c),
\end{align*}
as required.
\end{proof}
\begin{claim*}
$\mu^*$ agrees with the measure $\mu$ on $\mc A$.
\end{claim*}
\begin{proof}~\\
Let $B \in \mc A$ and let $\mc B = \{B' : B \subseteq B', B' \in \mc A\}$. We must show
that $\mu^*(B) = \mu(B)$. We have
\begin{align*}
\mu^*(B)
&:= \inf \{\mu(B') : B' \in \mc B\} \\
&= \inf \{\mu(B \cup (B' \setminus B)) : B' \in \mc B\} \\
&= \inf \{\mu(B) + \mu(B' \setminus B) : B' \in \mc B\}.
\end{align*}
Let $M = \{\mu(B) + \mu(B' \setminus B) : B' \in \mc B\}$; the set over which this last infimum is taken.
Note that $B \in \mc B$, therefore $\mu(B) = \mu(B) + \mu(\emptyset) \in M$. Furthermore, since $\mu$ is
non-negative, $m \geq \mu(B)$ for all $m \in M$. Therefore $\mu(B)$ is a minimum of $M$, and therefore it is
the infimum of $M$, as required.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw04-c0b6.png}
\end{mdframed}
\begin{proof}~\\
Let $\alpha: \R \to \R$ be right-continuous and increasing, and let $m$ be Lebesgue-Stieltjes measure. By
definition,
\begin{align*}
m(\{x\}) := \inf \Big\{\sum_{i=1}^\infty \ell(I_i) : \{x\} \subseteq \bigcup_{i=1}^\infty I_i, ~ I_i \subseteq \R \text{~for all~}i\Big\}.
\end{align*}
Recall that for any measure $\mu$, given a sequence of sets $A_i \downarrow A$, we
have $\lim_{n\to\infty} \mu(A_i) = \mu(A)$. Therefore we have
\begin{align*}
m\big(\{x\}\big)
&= \lim_{n\to\infty} m\big((x - 1/n, x]\big) \\
&= \lim_{n\to\infty} \alpha(x) - \alpha(x - 1/n) \\
&= \alpha(x) - \lim_{n\to\infty} \alpha(x - 1/n) \\
&= \alpha(x) - \alpha(x-).
\end{align*}
\end{proof}
\begin{comment}
\newpage
EXERCISE 3.3 FROM OLD VERSION
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw-2389.png}
\end{mdframed}
\begin{proof}~\\
From finite additivity we have
\begin{align*}
\mu(A \cup B) &= \mu(A) + \mu(A \setminus B). \\
\mu(A \cup B) &= \mu(B) + \mu(B \setminus A).
\end{align*}
Summing these gives
\begin{align*}
2\mu(A \cup B)
= \mu(A) + \mu(B) + \mu(A \triangle B)
\end{align*}
But $\{A \triangle B, A \cap B\}$ is a partition of $A \cup B$ hence from finite additivity
again $\mu(A \triangle B) + \mu(A \cap B) = \mu(A \cup B)$. Therefore
\begin{align*}
2\mu(A \cup B) = \mu(A) + \mu(B) + \mu(A \cup B) - \mu(A \cap B),
\end{align*}
or equivalently
\begin{align*}
\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B).
\end{align*}
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/analysis--berkeley-202a-hw-3a79.png}
\end{mdframed}
\begin{claim*}
If $m$ and $n$ have the same value on any open interval in $B$ then they have the same value on any set
in $\mc B$.
\end{claim*}
\begin{proof}~\\
Let $\mc O$ be the collection of open subsets of $\R$.
Let $O \in \mc O$. Then $O$ can be written as a countable union of disjoint open intervals, $O = \bigcup_i I_i$. Therefore
\begin{align*}
m(O) = m(\bigcup_i I_i) = \sum_i m(I_i) = \sum_i n(I_i) = n(O).
\end{align*}
By definition, $\mc B = \sigma(\mc O)$. We want to show that measures $m$ and $n$ agree on every set $A \in \mc B$.
Let $A \in \mc B$ and suppose $m(A) = n(A)$. Then
\begin{align*}
m(A^c) = m(X) - m(A) = n(X) - n(A) = n(A^c).
\end{align*}
\end{proof}
\end{comment}