-
Notifications
You must be signed in to change notification settings - Fork 2
/
abstract-algebra--oxford-M1-groups-group-actions.tex
431 lines (349 loc) · 13.6 KB
/
abstract-algebra--oxford-M1-groups-group-actions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
\documentclass[12pt]{article}
\usepackage{enumerate}
\usepackage{mathematics}
\newcommand{\Ch}{\mathcal{C}_h}
\begin{document}
\title{Oxford M1 - Groups and Group Actions \footnotetext{\url{https://courses.maths.ox.ac.uk/node/5552}}}
\author{}
\date{}
\maketitle
\section{Sheet 1: Binary Operations. The Group Axioms. Examples.}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-1-1.png}
\end{mdframed}
\begin{enumerate}[label=(\roman*)]
\item associative, commutative, identity is $e = 0$, only inverse is $e^\1 = e$.
\item associative, commutative, identity is $e = -1$, inverse is $m^\1 = -m - 2$.
\item \red{(not) associative?}, commutative, identity is $I_n$, inverse is $A^\1$\\
Note that if $AB = BA$ then $A\cdot B = AB$, and $A\cdot(B\cdot C) = A(BC) = (AB)C$. I.e. the
operation is associative for commutative matrices.\\
Let $A$ be a reflection and $B$ a shear:
$A = \matMMxNN{-1}{0}
{0}{1}$, $B = \matMMxNN{1}{\frac{1}{\sqrt{2}}}
{0}{\frac{1}{\sqrt{2}}}$.\\
Then $AB = \matMMxNN{-1}{-\frac{1}{\sqrt{2}}}
{0}{~~\frac{1}{\sqrt{2}}}$ and
and $BA = \matMMxNN{-1}{\frac{1}{\sqrt{2}}}
{0}{\frac{1}{\sqrt{2}}}$,
and $\frac{1}{2}(AB + BA) = \matMMxNN{-1}{0}
{0}{\frac{1}{\sqrt{2}}}$.\\
% E.g. let $A = I, B = 2I, C=3I$.\\
% Then $A\cdot (B\cdot C) = I\cdot (6I)$ and $(A \cdot B)\cdot C) = 2I \cdot 3I = 6I$.
\item associative (function composition is associative), not commutative, identity is $I$, inverses
only exist for bijections.
\end{enumerate}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-1-2.png}
\end{mdframed}
These both satisfy existence of identity and inverses because they are Latin squares.
Latin square, group:\\~\\
\begin{tabular}{c||c|c|c|c|c|}
& e & a & b & c & d\\
\hline
\hline
e & e & a & b & c & d\\
a & a & b & c & d & e\\
b & b & c & d & e & a\\
c & c & d & e & a & b\\
d & d & e & a & b & c
\end{tabular}\\
Group because it's isomorphic to $\Z/5\Z$.\\
Associative: e.g. $a(bc) = ae = a$ and $(ab)c = cc = a$.
Commutative.
~\\~\\
\red{Latin square, not a group:}\\~\\
\begin{tabular}{c||c|c|c|c|c|}
& e & a & b & c & d\\
\hline
\hline
e & e & a & b & c & d\\
a & a &&&&\\
b & b &&&&\\
c & c &&&&\\
d & d &&&&
\end{tabular}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-1-3.png}
\end{mdframed}
\begin{proof}~\\
Let $A, B \in M_n(\C)$ be complex $n \times n$ matrices.
It is geometrically plausible that complex conjugation preserves addition, but to confirm that:
let $z_1 = u_1 + v_1i$ and $z_2 = u_2 + v_2i$ be complex numbers. Then
\begin{align*}
\bar{z_1} + \bar{z_2} = (u_1 - v_1i) + (u_2 - v_2i) = (u_1 + u_2) - (v_1 + v_2)i = \bar{z_1 + z_2}.
\end{align*}
For addition of complex matrices we have
$\(\bar{A + B}\)_{ij} = \bar{a_{ij} + b_{ij}} = \bar{a_{ij}} + \bar{b_{ij}}$, proving that
$\bar{A + B} = \bar{A} + \bar{B}$.
For complex multiplication we have
\begin{align*}
\bar{z_1z_2}
&= \bar{(u_1u_2 - v_1v_2) + (u_1v2 + v_1u_2)i}
&= (u_1u_2 - v_1v_2) - (u_1v2 + v_1u_2)i\\
\text{and}\\
\bar{z_1}~\bar{z_2}
&= (u_1 - v_1i)(u_2 - v_2i)
&= (u_1u_2 - v_1v_2) - (u_1v2 + v_1u_2)i,
\end{align*}
so $\bar{z_1z_2} = \bar{z_1}~\bar{z_2}$.
Therefore for multiplication of complex matrices we have
\begin{align*}
\(\bar{AB}\)_{ij}
= \bar{\sum_k A_{ik}B_{kj}}
= \sum_k \bar{A_{ik}B_{kj}}
= \sum_k \bar{A_{ik}}~\bar{B_{kj}}
= \(\bar{A}~\bar{B}\)_{ij},
\end{align*}
proving that $\bar{AB} = \bar{A}~\bar{B}$.
\end{proof}
\begin{definition*}
Let $A$ be a $n\times n$ matrix. If $A^\1 = \bar{A}^T$ then $A$ is \emph{unitary}.
\end{definition*}
\begin{proof}
Let $U(n)$ be the set of unitary $n\times n$ matrices, under matrix multiplication.
The identity is $I$, and inverses exist by definition of unitary.
Associativity is inherited from the set $M_n(\C)$ of $n \times n$ matrices.
It remains to show closure. Let $A, B$ be unitary matrices. Then
\begin{align*}
(AB)(\bar{AB})^T
= (AB)(\bar{A}~\bar{B})^T
= AB\bar{B}^T\bar{A}^T
= AI\bar{A}^T
= I,
\end{align*}
so $AB$ is indeed unitary.
\end{proof}
\begin{claim*}
$U(1)$ is abelian.
\end{claim*}
\begin{proof}
$U(1) \seq \C$, therefore $U(1)$ inherits commutativity from the field $\C$.
\end{proof}
\begin{claim*}
$U(n)$ is non-abelian for $n \geq 2$.
\end{claim*}
\begin{proof}Let $O_n$ be the set of orthogonal real $n \times n$ matrices. We show that for all
$n \geq 2$, a pair of matrices $A, B \in O_n$ exist for which $AB \neq BA$. Since
$O_n \subset U_n$ this proves that $U_n$ is non-abelian for $n \geq 2$.
Let $n \geq 2$ and let $\{e_1, e_2, \ldots, e_n\}$ be the standard basis for $R^n$.
\red{TODO: correct way to talk about reflections and rotations in $n$-dimensions}
Let $f_A:\R^n\to\R^n$ be a reflection across the subspace spanned by $\{e_2, e_3, \ldots, e_n\}$,
so that its matrix is $A = [-e_1, e_2, e_3, \ldots, e_n]$.
Let $f_B:\R^n\to\R^n$ be a rotation of the plane spanned by $\{e_1, e_2\}$, so that its matrix is
$B = [e_2, -e_1, e_3, \ldots, e_n]$.
Note that $A$ is diagonal and $A^\1 = A$, hence $A$ is orthogonal.
Note that $B^T = [-e_2, e_1, e_3, \ldots, e_n]$ and hence $BB^T = [e_1, e_2, e_3, \ldots, e_n]$,
hence $B$ is orthogonal.
We have $BA = [-e_2, -e_1, e_3, \ldots, e_n] \neq AB = [e_2, e_1, e_3, \ldots, e_n]$, proving
that $O_n$ is non-abelian for all $n \geq 2$.
Therefore $U_n \supset O_n$ is non-abelian for all $n \geq 2$.
\end{proof}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-1-4.png}
\end{mdframed}
Let $v \in \R^2$. We have
\begin{align*}
(g_2 \circ g_1)(v)
= g_2(g_1(v))
= g_2(Av + b)
= A(Av + b) + b
= A^2v + Ab + b,
\end{align*}
which is an affine transformation.
We have shown closure.
The group identity is the identity transformation, which is affine.
Inverses exist: let $f$ be the affine transformation given by $v \mapsto Av + b$. Then $f^\1$ is
given by $v \mapsto A^\1(v - b)$, since
\begin{align*}
(f^\1f)(v) = A^\1((Av + b) - b) = v,
\end{align*}
and
\begin{align*}
(ff^\1)(v) = A(A^\1(v - b)) + b = v.
\end{align*}
\red{We need to show associativity}.
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-1-5.png}
\end{mdframed}
\begin{enumerate}[label=(\roman*)]
\item $e^\1 = e, a^\1 = a, b^\1 = g, c^\1 = c, d^\1 = d, f^\1 = f, g^\1 = b, h^\1 = h$
\item
order of $e$ is 1\\
order of $a$ is 2 since $a^2 = e$\\
order of $b$ is 4 since $b^4 = d^2 = e$
\item
\end{enumerate}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-1-6.png}
\end{mdframed}
\begin{definition*}
Let $G, H$ be groups. $G \times H$ is a group under the componentwise operation:
$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2)$.
\end{definition*}
\begin{enumerate}
\item
\begin{proof}
Let $G, H$ be Abelian groups. Then in $G \times H$, we have
$(g_1, h_1) \cdot (g_2, h_2) = (g_1g_2, h_1h_2) = (g_2g_1, h_2h_1) = (g_2, h_2) \cdot (g_1,
h_1)$, so $G \times H$ is Abelian.
Conversely, let $G \times H$ be Abelian. Then
$(g_1, h_1) \cdot (g_2, h_2) = (g_2, h_2) \cdot (g_1, h_1)$. Therefore
$(g_1g_2, h_1h_2) = (g_2g_1, h_2h_1)$, therefore both $G$ and $H$ are Abelian.
\end{proof}
\item
\begin{proof}
To show that $\phi$ is an isomorphism, we must show that $\phi$ is injective, surjective, and
that it is a homomorphism (preserves multiplication).
\textbf{Injective:} Let $z_1, z_2 \in \C^*$. Suppose $\phi(z_1) = \phi(z_2) = (r, w)$. Then
$|z_1| = |z_2|$ and $z_1/|z_1| = z_2/|z_2|$. Therefore $z_1 = z_2$.
\textbf{Surjective:} Suppose there exists $(r, w) \in (0, \infty) \times S^1$ that is not in
the image of $\phi$. But $\phi(r\cos(\Arg w) + ir\sin(\Arg w)) = (r, w)$, so no such $(r, w)$
exists.
\textbf{Homomorphism:} Note that the operation on the right-hand side is componentwise
multiplication.
We have
\begin{align*}
\phi(z_1z_2) &= (|z_1z_2|, z_1z_2/|z_1z_2|)\\
&= \Big(|z_1||z_2|, \cos(\Arg z_1 + \Arg z_2) + i\sin(\Arg z_1 + \Arg z_2)\Big)\\
\text{and}\\
\phi(z_1)\phi(z_2) &= (|z_1|, z_1/|z_1|)\cdot (|z_2|, z_2/|z_2|)\\
&= \Big(|z_1||z_2|, \cos(\Arg z_1 + \Arg z_2) + i\sin(\Arg z_1 + \Arg z_2)\Big).
\end{align*}
\end{proof}
\item
\newpage
\begin{definition*}
$O(2)$ is the group of $2\times 2$ real orthogonal matrices under matrix
multiplication. $SO(2)$ is the subgroup of $O(2)$ with determinant $1$.
\end{definition*}
\begin{proof}
Sketch:
Since they have determinant 1, $SO(2)$ is the group of rotations of the plane. Each complex
number in $S^1$ rotates the plane its argument. $\phi:SO(2) \to S^1$ given by
$\phi(A) := \cos\theta + i\sin\theta$ is a bijection. It preserves multiplication because this
is composition of (linear) transformations.
\red{worth doing}
\end{proof}
\end{enumerate}
\newpage
\section{Sheet 2: Permutations of a finite set. Transpositions. Parity. Conjugacy.}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-2-1.png}
\end{mdframed}
\begin{align*}
\alpha &= (1,12)(2,6,8)(3,5,4,7,11,10,9)\\
\beta &= (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)\\
\gamma &= (1,2,3,4,5,6)(7,9,8,10,12,11)
\end{align*}
The order of $\alpha$ is 42.\\
The order of $\beta$ is 2.\\
The order of $\gamma$ is 6.\\
\red{even vs odd?}
Using the representation given in the question:
\begin{align*}
\setcounter{MaxMatrixCols}{12}
\alpha^2 &=
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\\
1 & 8 & 4 & 11 & 7 & 2 & 10 & 6 & 5 & 3 & 9 & 12
\end{pmatrix}
= (2,8,6)(3,4,11,9,5,7,10)\\
\alpha\beta &=
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\\
1 & 7 & 8 & 6 & 9 & 5 & 2 & 11 & 10 & 4 & 3 & 12
\end{pmatrix}
= (2,7)(3,8,11)(4,6,5,9,10)\\
\gamma^\1 &=
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\\
6 & 1 & 2 & 3 & 4 & 5 & 11 & 9 & 7 & 8 & 12 & 10
\end{pmatrix}
= (1,6,5,4,3,2)(7,11,12,10,8,9)
\end{align*}
Using the cycle representation:
\begin{align*}
\alpha^2 &= (2,8,6)(3,4,11,9,5,7,10)\\
\alpha\beta &= (2,7)(3,8,11)(4,6,5,9,10)\\
\gamma^\1 &= (1,6,5,4,3,2)(7,11,12,10,8,9)\\
\end{align*}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-2-2.png}
\end{mdframed}
\begin{align*}
id & ~~~ 1 = \\
(12) ~~ (13) ~~ (14) ~~ (23) ~~ (24) ~~ (34) & ~~~ 6 = \frac{4 \cdot 3}{2}\\
(123) ~~ (124) ~~ (132) ~~ (134) ~~ (142) ~~ (143) ~~ (234) ~~ (243) & ~~~ 8 = \frac{4 \cdot 3 \cdot 2}{3}\\
(1234) ~~ (1243) ~~ (1324) ~~ (1342) ~~ (1423) ~~ (1432) & ~~~ 6 = \frac{4 \cdot 3 \cdot 2 \cdot 1}{4}\\
(12)(34) ~~ (13)(24) ~~ (14)(23) & ~~~ 3 = \frac{(4 \cdot 3) \cdot (4 \cdot 3)}{}\\
\hline
& ~~ 24
\end{align*}
\begin{align*}
id & ~~~\\
2-\text{cycles} &= 10 = \frac{5 \cdot 4}{2}\\
3-\text{cycles} &= 20 = \frac{5 \cdot 4 \cdot 3}{3} \text{but these are all odd}\\\\
4-\text{cycles} &= 30 = \frac{5 \cdot 4 \cdot 3 \cdot 2}{4}\\\\
5-\text{cycles} &= 24 = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5}\\\\
2,3-\text{cycles}\\
\hline
\end{align*}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-2-3.png}
\end{mdframed}
\newpage
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-2-4.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-2-5.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/oxford-prelims-M1-groups-2-6.png}
\end{mdframed}
\section{Sheet 5: Homomorphisms. Conjugacy. Normal Subgroups.}
\begin{mdframed}
\includegraphics[width=400pt]{img/abstract-algebra-oxford-M1-5-1.png}
\end{mdframed}
\begin{claim*}
[Forwards implication]
If $g^\1hg \in H$ for all $g \in G, h \in H$ then $gH = Hg$.
\end{claim*}
\begin{proof} We show that $Hg \subseteq gH$ and $gH \subseteq Hg$, for all $g \in G$.\\
Multiplying on the left by $g$ gives $hg \in gH$ for all $g \in G, h \in H$. Therefore $Hg \subseteq gH$ for all $g \in G$.
\end{proof}
\begin{mdframed}
\includegraphics[width=400pt]{img/abstract-algebra-oxford-M1-5-2-1.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/abstract-algebra-oxford-M1-5-2-2.png}
\end{mdframed}
\begin{mdframed}
\includegraphics[width=400pt]{img/abstract-algebra-oxford-M1-5-3.png}
\end{mdframed}
\newpage
\section{Sheet 6: Quotient Groups. Isomorphism Theorem. Group Actions.}
\begin{mdframed}
\includegraphics[width=400pt]{img/abstract-algebra-oxford-M1-6-1.png}
\end{mdframed}
\begin{theorem*}[First Isomorphism Theorem]~\\
Let $\varphi:G_1 \to G_2$ and let $H$ be the kernel of $\varphi$. Then
\begin{enumerate}
\item $\Im \varphi \cong G/ \ker \varphi$
\end{enumerate}
\end{theorem*}
\subsection*{(i): $\R^*/\{\pm 1\} \cong (0, \infty)$}
We have a group $G = \R^* = \R\setminus\{0\}$.
We have a subgroup $H = \{\pm 1\}$.
The group is abelian hence the subgroup is normal.
The set of cosets is $G/H = \{(0, \infty), (-\infty, 0)\}$.
Define the homomorphism $\varphi: G \to G/H$.
The image of $\varphi$ is the set of cosets $G/H$.
The kernel of $\varphi$ is $(0, \infty)$.
\end{document}