-
Notifications
You must be signed in to change notification settings - Fork 2
/
abstract-algebra--homomorphism.tex
57 lines (37 loc) · 1.56 KB
/
abstract-algebra--homomorphism.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
\documentclass[12pt]{article}
\usepackage{mathematics}
\newcommand{\op}{\otimes}
\newcommand{\id}{\text{id}}
\title{Structure-preserving maps}
\date{}
\begin{document}
\maketitle
\begin{definition*}
Let $S$ be a set equipped with a binary operation $\op$. Then $f:S \to S$ is a
structure-preserving map if $f(a \op b) = f(a) \op f(b)$.
\end{definition*}
\begin{examples*}\hspace{0pt}
\begin{enumerate}
\item The identity map is always structure-preserving since
$\id(a \op b) = a \op b = \id(a) \op \id(b)$.
\item Consider the reals under addition and let $f(x) = 2x$. Then
$f(a + b) = 2(a + b) = f(a) + f(b)$.
\item Let $V$ be a vector space and let $f:V \to V$ be a linear map. Then $f$ preserves additive
structure since $f(u + v) = f(u) + f(v)$ for all $u, v \in V$.
\item {\bf Non-example} (not a linear map): Consider the reals under addition and let $f(x) = x + 1$. Then $f(a + b) = a + b + 1 \neq (a + 1) + (b + 1)$.
\end{enumerate}
\end{examples*}
\begin{claim*}
Let $V$ be a vector space and let $f: V \to V$. Then $f$ preserves additive structure if and only
if $f$ is a linear map.
\end{claim*}
\begin{proof}
Let $V$ be a vector space and let $f:V \to V$.
Clearly if $f$ is a linear map then it preserves additive structure.
Suppose $f$ preserves the additive structure, i.e. $f(u + v) = f(u) + f(v)$ for all
$u, v \in V$.
Then for $a \in \Z$ we have $f(au) = f(u + u + \ldots + u) = af(u)$.
Also $f(0) = 0$ since $f(0) = f(0 + 0) = f(0) + f(0) = 2f(0)$.
But what about $a \in \R \setminus \Z$?
\end{proof}
\end{document}