-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFSC147_dataset.py
331 lines (285 loc) · 13.2 KB
/
FSC147_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
"""
FSC-147 dataset
The exemplar boxes are sampled and resized to the same size
"""
from torch.utils.data import Dataset
import os
from PIL import Image
import json
import torch
import numpy as np
from torchvision.transforms import transforms
import pdb
def get_rpn_patches(img_path, rpn_anno):
res_boxes = []
rpn_boxes = rpn_anno[img_path]
for rpn_box in rpn_boxes[:100]:
[x1,y1,x2,y2] = rpn_box
tmp_boxes = np.zeros((4,2))
tmp_boxes[0] = [x1,y1]
tmp_boxes[2] = [x2,y2]
res_boxes.append(tmp_boxes)
return res_boxes
def random_aug_boxes(boxes, h, w):
res_boxes = np.zeros((270, 4, 2))
np.random.seed(903)
#ww = (boxes[:,2,0] - boxes[:,0,0]).mean()
#hh = (boxes[:,2,1] - boxes[:,0,1]).mean()
num_box = 10
for idx, ww in enumerate(np.arange(3,138,5)):
hh = ww
#for idx in range(1):
x1 = np.random.choice(int(w-ww), num_box)
y1 = np.random.choice(int(h-hh), num_box)
x2 = x1 + int(ww)
y2 = y1 + int(hh)
res_boxes[idx*num_box:(idx+1)*num_box,0,0] = x1
res_boxes[idx*num_box:(idx+1)*num_box,0,1] = y1
res_boxes[idx*num_box:(idx+1)*num_box,1,0] = x1
res_boxes[idx*num_box:(idx+1)*num_box,1,1] = y2
res_boxes[idx*num_box:(idx+1)*num_box,2,0] = x2
res_boxes[idx*num_box:(idx+1)*num_box,2,1] = y2
res_boxes[idx*num_box:(idx+1)*num_box,3,0] = x2
res_boxes[idx*num_box:(idx+1)*num_box,3,1] = y1
return res_boxes
def get_image_classes(class_file):
class_dict = dict()
with open(class_file, 'r') as f:
classes = [line.split('\t') for line in f.readlines()]
for entry in classes:
class_dict[entry[0]] = entry[1]
return class_dict
def batch_collate_fn(batch):
batch = list(zip(*batch))
batch[0], scale_embedding, batch[2] = batch_padding(batch[0], batch[2])
patches = torch.stack(batch[1], dim=0)
batch[1] = {'patches': patches, 'scale_embedding': scale_embedding.long()}
return tuple(batch)
def _max_by_axis(the_list):
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
def batch_padding(tensor_list, target_dict):
if tensor_list[0].ndim == 3:
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
batch_shape = [len(tensor_list)] + max_size
density_shape = [len(tensor_list)] + [1, max_size[1], max_size[2]]
b, c, h, w = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
density_map = torch.zeros(density_shape, dtype=dtype, device=device)
pt_map = torch.zeros(density_shape, dtype=dtype, device=device)
gtcount = []
scale_embedding = []
box_size = []
for idx, package in enumerate(zip(tensor_list, tensor, density_map, pt_map)):
img, pad_img, pad_density, pad_pt_map = package
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
pad_density[:, : img.shape[1], : img.shape[2]].copy_(target_dict[idx]['density_map'])
pad_pt_map[:, : img.shape[1], : img.shape[2]].copy_(target_dict[idx]['pt_map'])
gtcount.append(target_dict[idx]['gtcount'])
box_size.append(target_dict[idx]['box_size'])
scale_embedding.append(target_dict[idx]['scale_embedding'])
target = {'density_map': density_map,
'pt_map': pt_map,
'box_size': box_size,
'gtcount': torch.tensor(gtcount)}
else:
raise ValueError('not supported')
return tensor, torch.stack(scale_embedding), target
class FSC147Dataset(Dataset):
def __init__(self, data_dir, data_list, scaling, box_number=3, scale_number=20, min_size=384, max_size=1584, preload=True, main_transform=None, query_transform=None):
self.data_dir = data_dir
self.data_list = [name.split('\t') for name in open(data_list).read().splitlines()]
self.scaling = scaling
self.box_number = box_number
self.scale_number = scale_number
self.preload = preload
self.main_transform = main_transform
self.query_transform = query_transform
self.min_size = min_size
self.max_size = max_size
# load annotations for the entire dataset
annotation_file = os.path.join(self.data_dir, 'annotation_FSC147_384.json')
image_classes_file = os.path.join(self.data_dir, 'ImageClasses_FSC147.txt')
self.image_classes = get_image_classes(image_classes_file)
with open(annotation_file) as f:
self.annotations = json.load(f)
self.rpn_anno = np.load('box_rpn_all.npy', allow_pickle=True).item()
self.sel_anno = np.load('box_rpn_sel_all.npy', allow_pickle=True).item()
# store images and generate ground truths
self.images = {}
self.targets = {}
self.patches = {}
def aug_boxes(self, boxes, points):
res_boxes = np.zeros((points.shape[0], 4, 2))
ww = (boxes[:,2,0] - boxes[:,0,0]).mean()
hh = (boxes[:,2,1] - boxes[:,0,1]).mean()
x1 = points[:, 0] - int(0.5*ww)
x2 = points[:, 0] + int(0.5*ww)
y1 = points[:, 1] - int(0.5*hh)
y2 = points[:, 1] + int(0.5*hh)
res_boxes[:,0,0] = x1
res_boxes[:,0,1] = y1
res_boxes[:,1,0] = x1
res_boxes[:,1,1] = y2
res_boxes[:,2,0] = x2
res_boxes[:,2,1] = y2
res_boxes[:,3,0] = x2
res_boxes[:,3,1] = y1
return res_boxes
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
file_name = self.data_list[idx][0]
if file_name in self.images:
img = self.images[file_name]
target = self.targets[file_name]
patches = self.patches[file_name]
else:
image_path = os.path.join(self.data_dir, 'images_384_VarV2/' + file_name)
density_path = os.path.join(self.data_dir, 'gt_density_map_adaptive_384_VarV2/' + file_name.replace('jpg', 'npy'))
img_info = self.annotations[file_name]
img = Image.open(image_path).convert("RGB")
w, h = img.size
# resize the image
r = 1.0
if h > self.max_size or w > self.max_size:
r = self.max_size / max(h, w)
if r * h < self.min_size or w*r < self.min_size:
r = self.min_size / min(h, w)
nh, nw = int(r*h), int(r*w)
img = img.resize((nw, nh), resample=Image.BICUBIC)
#target = np.zeros((nh, nw), dtype=np.float32)
density_map = np.load(density_path).astype(np.float32)
pt_map = np.zeros((nh, nw), dtype=np.int32)
points = (np.array(img_info['points']) * r).astype(np.int32)
boxes = np.array(img_info['box_examples_coordinates']) * r
boxes = boxes[:self.box_number, :, :]
#boxes = self.sel_anno[image_path.split('/')[-1]][:3,:,:]
#boxes = get_rpn_patches(image_path, self.rpn_anno)
boxes2 = random_aug_boxes(boxes, nh, nw)
#boxes = boxes2
boxes = np.concatenate((boxes, boxes2), 0)
gtcount = points.shape[0]
# crop patches and data transformation
target = dict()
patches = []
box_size = []
scale_embedding = []
#print('boxes:', boxes.shape[0])
if points.shape[0] > 0:
points[:,0] = np.clip(points[:,0], 0, nw-1)
points[:,1] = np.clip(points[:,1], 0, nh-1)
pt_map[points[:, 1], points[:, 0]] = 1
for box in boxes:
x1, y1 = box[0].astype(np.int32)
x2, y2 = box[2].astype(np.int32)
dd_x = 0.005*(x2-x1)
dd_y = 0.005*(y2-y1)
# calculate scale
scale = (x2 - x1) / nw * 0.5 + (y2 -y1) / nh * 0.5
scale = scale // (0.5 / self.scale_number)
scale = scale if scale < self.scale_number - 1 else self.scale_number - 1
scale_embedding.append(scale)
patch = img.crop((int(x1), int(y1), int(x2), int(y2)))
patches.append(self.query_transform(patch))
box_size.append([(y2-y1), (x2-x1)])
target['density_map'] = density_map * self.scaling
target['pt_map'] = pt_map
target['gtcount'] = gtcount
target['box_size'] = torch.tensor(box_size)
target['scale_embedding'] = torch.tensor(scale_embedding)
img, target = self.main_transform(img, target)
patches = torch.stack(patches, dim=0)
if self.preload:
self.images.update({file_name: img})
self.patches.update({file_name: patches})
self.targets.update({file_name: target})
return img, patches, target, file_name
def pad_to_constant(inputs, psize):
h, w = inputs.size()[-2:]
ph, pw = (psize-h%psize),(psize-w%psize)
# print(ph,pw)
(pl, pr) = (pw//2, pw-pw//2) if pw != psize else (0, 0)
(pt, pb) = (ph//2, ph-ph//2) if ph != psize else (0, 0)
if (ph!=psize) or (pw!=psize):
tmp_pad = [pl, pr, pt, pb]
# print(tmp_pad)
inputs = torch.nn.functional.pad(inputs, tmp_pad)
return inputs
class MainTransform(object):
def __init__(self):
#self.img_trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
self.img_trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
def __call__(self, img, target):
img = self.img_trans(img)
density_map = target['density_map']
pt_map = target['pt_map']
pt_map = torch.from_numpy(pt_map).unsqueeze(0)
density_map = torch.from_numpy(density_map).unsqueeze(0)
img = pad_to_constant(img, 32)
density_map = pad_to_constant(density_map, 32)
pt_map = pad_to_constant(pt_map, 32)
target['density_map'] = density_map.float()
target['pt_map'] = pt_map.float()
return img, target
def get_query_transforms(is_train, exemplar_size):
if is_train:
# SimCLR style augmentation
return transforms.Compose([
transforms.Resize(exemplar_size),
#transforms.RandomApply([
# transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
#], p=0.8),
#transforms.RandomGrayscale(p=0.2),
#transforms.RandomApply([GaussianBlur([.1, 2.])], p=0.5),
transforms.ToTensor(),
# transforms.RandomHorizontalFlip(), HorizontalFlip may cause the pretext too difficult, so we remove it
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
else:
return transforms.Compose([
transforms.Resize(exemplar_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def build_dataset(cfg, is_train):
main_transform = MainTransform()
query_transform = get_query_transforms(is_train, cfg.DATASET.exemplar_size)
if is_train:
data_list = cfg.DATASET.list_train
else:
if not cfg.VAL.evaluate_only:
data_list = cfg.DATASET.list_val
else:
data_list = cfg.DATASET.list_test
dataset = FSC147Dataset(data_dir=cfg.DIR.dataset,
data_list=data_list,
scaling=1.0,
box_number=cfg.DATASET.exemplar_number,
scale_number=cfg.MODEL.ep_scale_number,
main_transform=main_transform,
query_transform=query_transform)
return dataset
if __name__ == '__main__':
from torch.utils.data import DataLoader
main_transform = MainTransform()
query_transform = get_query_transforms(is_train=True, exemplar_size=(128, 128))
dataset = FSC147Dataset(data_dir='D:/dataset/FSC147/',
data_list='D:/dataset/FSC147/train.txt',
scaling=1.0,
main_transform=main_transform,
query_transform=query_transform)
data_loader = DataLoader(dataset, batch_size=5, collate_fn=batch_collate_fn)
for idx, sample in enumerate(data_loader):
img, patches, targets = sample
print(img.shape)
print(patches.keys())
print(targets.keys())
break