forked from kaarthik108/snowChat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchain.py
142 lines (123 loc) · 4.73 KB
/
chain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from typing import Any, Callable, Dict, Optional
import boto3
import streamlit as st
from langchain.chains import ConversationalRetrievalChain, LLMChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chat_models import ChatOpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI, Replicate
from langchain.llms.bedrock import Bedrock
from langchain.vectorstores import SupabaseVectorStore
from pydantic import BaseModel, validator
from supabase.client import Client, create_client
from template import CONDENSE_QUESTION_PROMPT, LLAMA_PROMPT, QA_PROMPT
supabase_url = st.secrets["SUPABASE_URL"]
supabase_key = st.secrets["SUPABASE_SERVICE_KEY"]
supabase: Client = create_client(supabase_url, supabase_key)
VERSION = "1f01a52ff933873dff339d5fb5e1fd6f24f77456836f514fa05e91c1a42699c7"
LLAMA = "meta/codellama-13b-instruct:{}".format(VERSION)
class ModelConfig(BaseModel):
model_type: str
secrets: Dict[str, Any]
callback_handler: Optional[Callable] = None
@validator("model_type", pre=True, always=True)
def validate_model_type(cls, v):
if v not in ["code-llama", "gpt", "claude"]:
raise ValueError(f"Unsupported model type: {v}")
return v
class ModelWrapper:
def __init__(self, config: ModelConfig):
self.model_type = config.model_type
self.secrets = config.secrets
self.callback_handler = config.callback_handler
self.setup()
def setup(self):
if self.model_type == "code-llama":
self.setup_llama()
elif self.model_type == "gpt":
self.setup_gpt()
elif self.model_type == "claude":
self.setup_claude()
def setup_llama(self):
self.q_llm = Replicate(
model=LLAMA,
input={"temperature": 0.2, "max_length": 200, "top_p": 1},
replicate_api_token=self.secrets["REPLICATE_API_TOKEN"],
)
self.llm = Replicate(
streaming=True,
callbacks=[self.callback_handler],
model=LLAMA,
input={"temperature": 0.2, "max_length": 300, "top_p": 1},
replicate_api_token=self.secrets["REPLICATE_API_TOKEN"],
)
def setup_gpt(self):
self.q_llm = OpenAI(
temperature=0.1,
openai_api_key=self.secrets["OPENAI_API_KEY"],
model_name="gpt-3.5-turbo-16k",
max_tokens=500,
)
self.llm = ChatOpenAI(
model_name="gpt-3.5-turbo-16k",
temperature=0.5,
openai_api_key=self.secrets["OPENAI_API_KEY"],
max_tokens=500,
callbacks=[self.callback_handler],
streaming=True,
)
def setup_claude(self):
bedrock_runtime = boto3.client(
service_name="bedrock-runtime",
aws_access_key_id=self.secrets["AWS_ACCESS_KEY_ID"],
aws_secret_access_key=self.secrets["AWS_SECRET_ACCESS_KEY"],
region_name="us-east-1",
)
parameters = {
"max_tokens_to_sample": 1000,
"stop_sequences": [],
"temperature": 0,
"top_p": 0.9,
}
self.q_llm = Bedrock(
model_id="anthropic.claude-instant-v1", client=bedrock_runtime
)
self.llm = Bedrock(
model_id="anthropic.claude-instant-v1",
client=bedrock_runtime,
callbacks=[self.callback_handler],
streaming=True,
model_kwargs=parameters,
)
def get_chain(self, vectorstore):
if not self.q_llm or not self.llm:
raise ValueError("Models have not been properly initialized.")
question_generator = LLMChain(llm=self.q_llm, prompt=CONDENSE_QUESTION_PROMPT)
doc_chain = load_qa_chain(llm=self.llm, chain_type="stuff", prompt=QA_PROMPT)
conv_chain = ConversationalRetrievalChain(
retriever=vectorstore.as_retriever(),
combine_docs_chain=doc_chain,
question_generator=question_generator,
)
return conv_chain
def load_chain(model_name="GPT-3.5", callback_handler=None):
embeddings = OpenAIEmbeddings(
openai_api_key=st.secrets["OPENAI_API_KEY"], model="text-embedding-ada-002"
)
vectorstore = SupabaseVectorStore(
embedding=embeddings,
client=supabase,
table_name="documents",
query_name="v_match_documents",
)
if "claude" in model_name.lower():
model_type = "claude"
elif "GPT-3.5" in model_name:
model_type = "gpt"
else:
model_type = "code-llama"
config = ModelConfig(
model_type=model_type, secrets=st.secrets, callback_handler=callback_handler
)
model = ModelWrapper(config)
return model.get_chain(vectorstore)