forked from reconfigurable-ml-pipeline/ipa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
adapter.py
661 lines (631 loc) · 27.5 KB
/
adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
from typing import Dict, Literal, Tuple, Union, Optional, Any
import time
import tqdm
import numpy as np
from kubernetes import config
from kubernetes import client
from kubernetes.client.exceptions import ApiException
from typing import List
import os
import sys
import pandas as pd
import concurrent.futures
import tensorflow as tf
from copy import deepcopy
from tensorflow.keras.models import load_model
import re
from statsmodels.tsa.arima.model import ARIMA
# get an absolute path to the directory that contains parent files
project_dir = os.path.dirname(__file__)
sys.path.append(os.path.normpath(os.path.join(project_dir, "..")))
from experiments.utils.pipeline_operations import (
check_node_up,
get_pod_name,
check_node_loaded,
is_terminating,
get_cpu_model_name,
)
from experiments.utils.prometheus import PromClient
from optimizer import Optimizer, Pipeline
from experiments.utils.constants import NAMESPACE, LSTM_PATH, LSTM_INPUT_SIZE
from experiments.utils import logger
from optimizer.optimizer import Optimizer
prom_client = PromClient()
from kubernetes import config
from kubernetes import client
try:
config.load_kube_config()
kube_config = client.Configuration().get_default_copy()
except AttributeError:
kube_config = client.Configuration()
kube_config.assert_hostname = False
client.Configuration.set_default(kube_config)
kube_custom_api = client.CustomObjectsApi()
class Adapter:
def __init__(
self,
pipeline_name: str,
pipeline: Pipeline,
node_names: List[str],
adaptation_interval: int,
optimization_method: Literal["gurobi", "brute-force"],
allocation_mode: Literal["base", "variable"],
only_measured_profiles: bool,
scaling_cap: int,
batching_cap: int,
alpha: float,
beta: float,
gamma: float,
num_state_limit: int,
monitoring_duration: int,
predictor_type: str,
from_storage: List[bool],
baseline_mode: Optional[str] = None,
central_queue: bool = False,
debug_mode: bool = False,
predictor_margin: int = 100,
teleport_mode: bool = False,
teleport_interval: int = 10,
backup_predictor_type: str = "max",
backup_predictor_duration: int = 2,
) -> None:
"""
Args:
pipeline_name (str): name of the pipeline
pipeline (Pipeline): pipeline object
adaptation_interval (int): adaptation interval of the pipeline
optimization_method (Literal[gurobi, brute-force])
allocation_mode (Literal[base;variable])
only_measured_profiles (bool)
scaling_cap (int)
alpha (float): accuracy weight
beta (float): resource weight
gamma (float): batching weight
num_state_limit (int): cap on the number of optimal states
monitoring_duration (int): the monitoring
deamon observing duration
"""
self.pipeline_name = pipeline_name
self.pipeline = pipeline
self.node_names = node_names
self.adaptation_interval = adaptation_interval
self.debug_mode = debug_mode
self.backup_predictor_type = backup_predictor_type
self.backup_predictor_duration = backup_predictor_duration
self.optimizer = Optimizer(
pipeline=pipeline,
allocation_mode=allocation_mode,
complete_profile=False,
only_measured_profiles=only_measured_profiles,
random_sample=False,
baseline_mode=baseline_mode,
)
self.optimization_method = optimization_method
self.scaling_cap = scaling_cap
self.batching_cap = batching_cap
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.num_state_limit = num_state_limit
self.monitoring_duration = monitoring_duration
self.predictor_type = predictor_type
self.monitoring = Monitoring(
pipeline_name=self.pipeline_name, sla=self.pipeline.sla
)
self.predictor = Predictor(
predictor_type=self.predictor_type,
predictor_margin=predictor_margin,
backup_predictor_type=self.backup_predictor_type,
backup_predictor_duration=self.backup_predictor_duration,
)
self.central_queue = central_queue
self.teleport_mode = teleport_mode
self.teleport_interval = teleport_interval
self.from_storage = {}
for node_index, node_name in enumerate(node_names):
self.from_storage[node_name] = from_storage[node_index]
def start_adaptation(self, workload=None):
# 0. Check if pipeline is up
# 1. Use monitoring for periodically checking the status of
# the pipeline in terms of load
# 2. Watches the incoming load in the system
# 3. LSTM for predicting the load
# 4. Get the existing pipeline state, batch size, model variant and replicas per
# each node
# 5. Give the load and pipeline status to the optimizer
# 6. Compare the optimal solutions from the optimzer
# to the existing pipeline's state
# 7. Use the change config script to change the pipelien to the new config
if workload is not None: # in teleport mode workload is read from dataset
workload_timestep = 0
time_interval = 0
timestep = 0
pipeline_up = False
while True:
check_interval = 5
logger.info(
f"Waiting for {check_interval} seconds before checking if the pipeline is up ..."
)
for _ in tqdm.tqdm(range(check_interval)):
time.sleep(1)
pipeline_up = check_node_loaded(node_name="router")
terminating = is_terminating(node_name="router")
if pipeline_up and not terminating:
logger.info(f"Found pipeline, starting adaptation ...")
initial_config = self.extract_current_config()
self.monitoring.get_router_pod_name()
to_save_config = self.saving_config_builder(
to_apply_config=deepcopy(initial_config),
node_orders=deepcopy(self.node_names),
stage_wise_latencies=deepcopy(self.pipeline.stage_wise_latencies),
stage_wise_accuracies=deepcopy(self.pipeline.stage_wise_accuracies),
stage_wise_throughputs=deepcopy(
self.pipeline.stage_wise_throughput
),
)
self.monitoring.adaptation_step_report(
change_successful=[False for _ in range(len(self.node_names))],
to_apply_config=to_save_config,
objective=None,
timestep=timestep,
monitored_load=[0],
time_interval=time_interval,
predicted_load=0,
)
break
while True:
logger.info("-" * 50)
logger.info(f"Waiting {self.adaptation_interval}" " to make next descision")
logger.info("-" * 50)
for _ in tqdm.tqdm(range(self.adaptation_interval)):
# if timestep == 0: break # adapt on the begining
time.sleep(1)
if self.teleport_mode:
workload_timestep += self.adaptation_interval
# check if the pipeline is up
pipeline_up = check_node_up(node_name="router")
if not pipeline_up:
logger.info("-" * 50)
logger.info(
"no pipeline in the system," " aborting adaptation process ..."
)
logger.info("-" * 50)
if self.teleport_mode:
self.update_recieved_load(rps_series)
else:
self.update_recieved_load()
# with the message that the process has ended
break
time_interval += self.adaptation_interval
timestep += 1
if self.teleport_mode:
rps_series = workload[
max(
0, workload_timestep - self.monitoring_duration * 60
) : workload_timestep
]
rps_series_1 = self.monitoring.rps_monitor(
monitoring_duration=self.monitoring_duration
)
a = 1
else:
rps_series = self.monitoring.rps_monitor(
monitoring_duration=self.monitoring_duration
)
if rps_series is None:
continue
predicted_load = self.predictor.predict(rps_series)
logger.info("-" * 50)
logger.info(f"\nPredicted Load: {predicted_load}\n")
logger.info("-" * 50)
optimal = self.optimizer.optimize(
optimization_method=self.optimization_method,
scaling_cap=self.scaling_cap,
batching_cap=self.batching_cap,
alpha=self.alpha,
beta=self.beta,
gamma=self.gamma,
arrival_rate=predicted_load,
num_state_limit=self.num_state_limit,
)
if "objective" in optimal.columns:
# objective = optimal["objective"][0]
objective = optimal[
[
"accuracy_objective",
"resource_objective",
"batch_objective",
"objective",
]
]
new_configs = self.output_parser(optimal)
logger.info("-" * 50)
logger.info(f"candidate configs:\n{new_configs}")
logger.info("-" * 50)
# check if the pipeline is up
pipeline_up = check_node_up(node_name="router")
if not pipeline_up:
logger.info("-" * 50)
logger.info(
"no pipeline in the system," " aborting adaptation process ..."
)
logger.info("-" * 50)
# with the message that the process has ended
if self.teleport_mode:
self.update_recieved_load(rps_series)
else:
self.update_recieved_load()
break
to_apply_config = self.choose_config(new_configs)
logger.info("-" * 50)
logger.info(f"to be applied configs:\n{to_apply_config}")
logger.info("-" * 50)
if to_apply_config is not None:
config_change_results = self.change_pipeline_config(to_apply_config)
else:
logger.info(
"optimizer couldn't find any optimal solution"
"the pipeline will stay the same"
)
config_change_results = [False for _ in range(len(self.node_names))]
try:
to_apply_config = self.extract_current_config()
except ApiException:
logger.info("-" * 50)
logger.info(
"no pipeline in the system," " aborting adaptation process ..."
)
logger.info("-" * 50)
# with the message that the process has ended
self.update_recieved_load()
break
objective = None
if to_apply_config is not None:
to_save_config = self.saving_config_builder(
to_apply_config=deepcopy(to_apply_config),
node_orders=deepcopy(self.node_names),
stage_wise_latencies=deepcopy(self.pipeline.stage_wise_latencies),
stage_wise_accuracies=deepcopy(self.pipeline.stage_wise_accuracies),
stage_wise_throughputs=deepcopy(
self.pipeline.stage_wise_throughput
),
)
self.monitoring.adaptation_step_report(
to_apply_config=to_save_config,
objective=objective,
timestep=timestep,
time_interval=time_interval,
monitored_load=rps_series,
predicted_load=predicted_load,
change_successful=config_change_results,
)
def output_parser(self, optimizer_output: pd.DataFrame):
new_configs = []
for _, row in optimizer_output.iterrows():
config = {}
for task_id, task_name in enumerate(self.node_names):
config[task_name] = {}
config[task_name]["cpu"] = row[f"task_{task_id}_cpu"]
config[task_name]["replicas"] = int(row[f"task_{task_id}_replicas"])
config[task_name]["batch"] = int(row[f"task_{task_id}_batch"])
config[task_name]["variant"] = row[f"task_{task_id}_variant"]
new_configs.append(config)
return new_configs
def choose_config(self, new_configs: List[Dict[str, Dict[str, Union[str, int]]]]):
# This should be from comparing with the
# current config
# easiest for now is to choose config with
# with the least change from former config
try:
current_config = self.extract_current_config()
except ApiException:
return None
new_config_socres = []
for new_config in new_configs:
new_config_score = 0
for node_name, new_node_config in new_config.items():
for config_knob, config_value in new_node_config.items():
if (
config_knob == "variant"
and config_value != current_config[node_name][config_knob]
):
new_config_score -= 1
if (
config_knob == "batch"
and str(config_value) != current_config[node_name][config_knob]
):
new_config_score -= 1
new_config_socres.append(new_config_score)
chosen_config_index = new_config_socres.index(max(new_config_socres))
chosen_config = new_configs[chosen_config_index]
return chosen_config
def extract_current_config(self) -> List[Dict[str, Dict[str, Union[str, int]]]]:
current_config = {}
for node_name in self.node_names:
node_config = {}
# TODO check if it exists before extracting the config
raw_config = kube_custom_api.get_namespaced_custom_object(
group="machinelearning.seldon.io",
version="v1",
namespace=NAMESPACE,
plural="seldondeployments",
name=node_name,
)
component_config = raw_config["spec"]["predictors"][0]["componentSpecs"][0]
env_vars = component_config["spec"]["containers"][0]["env"]
replicas = component_config["replicas"]
cpu = int(
component_config["spec"]["containers"][0]["resources"]["requests"][
"cpu"
]
)
for env_var in env_vars:
if env_var["name"] == "MODEL_VARIANT":
variant = env_var["value"]
if env_var["name"] == "MLSERVER_MODEL_MAX_BATCH_SIZE":
batch = env_var["value"]
node_config["replicas"] = replicas
node_config["variant"] = variant
node_config["cpu"] = cpu
if not self.central_queue:
node_config["batch"] = batch
else:
raw_queue_config = kube_custom_api.get_namespaced_custom_object(
group="machinelearning.seldon.io",
version="v1",
namespace=NAMESPACE,
plural="seldondeployments",
name="queue-" + node_name,
)
queue_component_config = raw_queue_config["spec"]["predictors"][0][
"componentSpecs"
][0]
queue_env_vars = queue_component_config["spec"]["containers"][0]["env"]
for env_var in queue_env_vars:
if env_var["name"] == "MLSERVER_MODEL_MAX_BATCH_SIZE":
batch = env_var["value"]
node_config["batch"] = batch
current_config[node_name] = node_config
return current_config
def change_pipeline_config(self, config: List[bool]):
"""change the existing configuration based on the optimizer
output
Args:
config (Dict[str, Dict[str, int]]): _description_
"""
node_names = list(config.keys())
node_configs = list(config.values())
with concurrent.futures.ThreadPoolExecutor() as executor:
results = list(
executor.map(self.change_node_config, zip(node_names, node_configs))
)
return results
def change_node_config(self, inputs: Tuple[str, Dict[str, int]]):
node_name, node_config = inputs
deployment_config = kube_custom_api.get_namespaced_custom_object(
group="machinelearning.seldon.io",
version="v1",
namespace=NAMESPACE,
plural="seldondeployments",
name=node_name,
)
deployment_config["spec"]["predictors"][0]["componentSpecs"][0][
"replicas"
] = node_config["replicas"]
deployment_config["spec"]["predictors"][0]["componentSpecs"][0]["spec"][
"containers"
][0]["resources"]["limits"]["cpu"] = str(node_config["cpu"])
deployment_config["spec"]["predictors"][0]["componentSpecs"][0]["spec"][
"containers"
][0]["resources"]["requests"]["cpu"] = str(node_config["cpu"])
for env_index, env_var in enumerate(
deployment_config["spec"]["predictors"][0]["componentSpecs"][0]["spec"][
"containers"
][0]["env"]
):
if env_var["name"] == "MODEL_VARIANT":
deployment_config["spec"]["predictors"][0]["componentSpecs"][0]["spec"][
"containers"
][0]["env"][env_index]["value"] = node_config["variant"]
if self.from_storage[node_name]:
init_container_args = deployment_config["spec"]["predictors"][0][
"componentSpecs"
][0]["spec"]["initContainers"][0]["args"]
if node_name not in ["yolo", "resnet-human"]:
# also fix the variants
deployment_config["spec"]["predictors"][0]["componentSpecs"][0][
"spec"
]["initContainers"][0]["args"] = [
re.sub(r"/([^/]+)$", "/" + node_config["variant"], model)
for model in init_container_args
]
if env_var["name"] == "MLSERVER_MODEL_MAX_BATCH_SIZE":
deployment_config["spec"]["predictors"][0]["componentSpecs"][0]["spec"][
"containers"
][0]["env"][env_index]["value"] = str(1)
if self.central_queue:
queue_deployment_config = kube_custom_api.get_namespaced_custom_object(
group="machinelearning.seldon.io",
version="v1",
namespace=NAMESPACE,
plural="seldondeployments",
name="queue-" + node_name,
)
for env_index, env_var in enumerate(
queue_deployment_config["spec"]["predictors"][0]["componentSpecs"][0][
"spec"
]["containers"][0]["env"]
):
if env_var["name"] == "MLSERVER_MODEL_MAX_BATCH_SIZE":
queue_deployment_config["spec"]["predictors"][0]["componentSpecs"][
0
]["spec"]["containers"][0]["env"][env_index]["value"] = str(
node_config["batch"]
)
number_of_retries = 3
for _ in range(3):
try:
kube_custom_api.replace_namespaced_custom_object(
group="machinelearning.seldon.io",
version="v1",
namespace=NAMESPACE,
plural="seldondeployments",
name=node_name,
body=deployment_config,
)
if self.central_queue:
kube_custom_api.replace_namespaced_custom_object(
group="machinelearning.seldon.io",
version="v1",
namespace=NAMESPACE,
plural="seldondeployments",
name="queue-" + node_name,
body=queue_deployment_config,
)
return True # Return True if the code execution is successful
except ApiException:
logger.info(
"change couldn't take place due to a problem in the K8S API, retrying..."
)
# Retry the code block
else: # no-break
logger.info(f"change couldn't take place after {number_of_retries} retries")
return False # Return False if all retries fail
def update_recieved_load(self, workload_of_teleport=None) -> None:
"""extract the entire sent load during the
experiment
"""
# get all sent duration
monitoring_duration = 1000
if workload_of_teleport is None:
all_recieved_loads = self.monitoring.rps_monitor(
monitoring_duration=monitoring_duration
)
else:
all_recieved_loads = workload_of_teleport
self.monitoring.update_recieved_load(all_recieved_loads)
def saving_config_builder(
self,
to_apply_config: Dict[str, Any],
node_orders: List[str],
stage_wise_latencies: List[float],
stage_wise_accuracies: List[float],
stage_wise_throughputs: List[float],
):
saving_config = to_apply_config
for index, node in enumerate(node_orders):
saving_config[node]["latency"] = stage_wise_latencies[index]
saving_config[node]["accuracy"] = stage_wise_accuracies[index]
saving_config[node]["throughput"] = stage_wise_throughputs[index]
return saving_config
class Monitoring:
def __init__(self, pipeline_name: str, sla: float) -> None:
self.pipeline_name = pipeline_name
self.adaptation_report = {}
self.adaptation_report["timesteps"] = {}
self.adaptation_report["metadata"] = {}
self.adaptation_report["metadata"]["sla"] = sla
self.adaptation_report["metadata"]["cpu_type"] = get_cpu_model_name()
def rps_monitor(self, monitoring_duration: int = 1) -> List[int]:
"""
Get the rps of the router
duration in minutes
"""
# Get the complete router pod name to make
# sure it is always getting the latest run
# router pod
rate = 2
rps_series, _ = prom_client.get_input_rps(
pod_name=self.router_pod_name,
namespace="default",
duration=monitoring_duration,
container="router",
rate=rate,
)
return rps_series
def get_router_pod_name(self):
self.router_pod_name = get_pod_name("router")[0]
def adaptation_step_report(
self,
to_apply_config: Dict[str, Dict[str, Union[str, int]]],
objective: float,
timestep: str,
time_interval: int,
monitored_load: List[int],
predicted_load: int,
change_successful: List[bool],
):
timestep = int(timestep)
self.adaptation_report["change_successful"] = change_successful
self.adaptation_report["timesteps"][timestep] = {}
self.adaptation_report["timesteps"][timestep]["config"] = to_apply_config
if objective is not None:
self.adaptation_report["timesteps"][timestep]["accuracy_objective"] = float(
objective["accuracy_objective"][0]
)
self.adaptation_report["timesteps"][timestep]["resource_objective"] = float(
objective["resource_objective"][0]
)
self.adaptation_report["timesteps"][timestep]["batch_objective"] = float(
objective["batch_objective"][0]
)
self.adaptation_report["timesteps"][timestep]["objective"] = float(
objective["objective"][0]
)
else:
self.adaptation_report["timesteps"][timestep]["resource_objective"] = None
self.adaptation_report["timesteps"][timestep]["accuracy_objective"] = None
self.adaptation_report["timesteps"][timestep]["batch_objective"] = None
self.adaptation_report["timesteps"][timestep]["objective"] = None
self.adaptation_report["timesteps"][timestep]["time_interval"] = time_interval
self.adaptation_report["timesteps"][timestep]["monitored_load"] = monitored_load
self.adaptation_report["timesteps"][timestep]["predicted_load"] = predicted_load
def update_recieved_load(self, all_recieved_loads: List[float]):
self.adaptation_report["metadata"]["recieved_load"] = all_recieved_loads
class Predictor:
def __init__(
self,
predictor_type,
backup_predictor_type: str = "reactive",
backup_predictor_duration=2,
predictor_margin: int = 100,
) -> int:
self.predictor_type = predictor_type
self.backup_predictor = backup_predictor_type
predictors = {
"lstm": load_model(LSTM_PATH),
"reactive": lambda l: l[-1],
"max": lambda l: max(l),
"avg": lambda l: max(l) / len(l),
"arima": None, # it is defined in place
}
self.model = predictors[predictor_type]
self.backup_model = predictors[backup_predictor_type]
self.predictor_margin = predictor_margin
self.backup_predictor_duration = backup_predictor_duration
def predict(self, series: List[int]):
series_aggregated = []
step = 10
for i in range(0, len(series), step):
series_aggregated.append(max(series[i : i + step]))
if len(series_aggregated) >= int((self.backup_predictor_duration * 60) / step):
if self.predictor_type == "lstm":
model_intput = tf.convert_to_tensor(
np.array(series_aggregated[-LSTM_INPUT_SIZE:]).reshape(
(-1, LSTM_INPUT_SIZE, 1)
),
dtype=tf.float32,
)
model_output = self.model.predict(model_intput)[0][0]
elif self.predictor_type == "arima":
model_intput = np.array(series_aggregated)
model = ARIMA(list(model_intput), order=(1, 0, 0))
model_fit = model.fit()
model_output = int(max(model_fit.forecast(steps=2))) # max
else:
model_output = self.model(series_aggregated)
else:
model_output = self.backup_model(series_aggregated)
# apply a safety margin to the system
predicted_load = round(model_output * (1 + self.predictor_margin / 100))
return predicted_load