-
Notifications
You must be signed in to change notification settings - Fork 16
/
fed_dual_att.py
219 lines (183 loc) · 8.33 KB
/
fed_dual_att.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# -*- coding: utf-8 -*-
"""
-----------------------------------------------
# File: fed_dual_att.py
# This file is created by Chuanting Zhang
# Email: [email protected]
# Date: 2020-07-25 (YYYY-MM-DD)
-----------------------------------------------
"""
import numpy as np
import h5py
import tqdm
import copy
import torch
import pandas as pd
import random
from collections import defaultdict
from torch.utils.data import DataLoader
import os
import sys
from sklearn import metrics
from scipy.spatial.distance import pdist
sys.path.append('../')
from DualFedAtt.utils.misc import args_parser, avg_dual_att
from DualFedAtt.utils.misc import get_data, process_isolated, get_warm_up_data
from DualFedAtt.utils.misc import get_cluster_label, jfi, cv
from DualFedAtt.utils.models import LSTM
from DualFedAtt.utils.fed_update import LocalUpdate, test_inference
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_stat_mean(d):
d = d.iloc[:-24 * args.test_days, :]
df_avg = d.groupby([d.index.week, d.index.hour]).mean().reset_index().iloc[:, 2:]
df_avg = (df_avg - df_avg.mean()) / df_avg.std()
return copy.deepcopy(df_avg.T)
def get_warm_model(g_index, save_name):
# warm-up model using the statistical mean model
warm_xc, warm_xp, warm_y = [], [], []
# print(g_index)
model = LSTM(args).to(device)
for i in g_index:
cell_xc, cell_xp, cell_y = get_warm_up_data(args, df.loc[i][:-1])
if args.phi > 0:
n_transfer = int(np.floor(len(cell_xc) * args.phi))
idx = [a for a in np.random.randint(0, len(cell_xc), n_transfer)]
warm_xc.append(cell_xc[idx])
warm_xp.append(cell_xp[idx])
warm_y.append(cell_y[idx])
else:
warm_xc.append(cell_xc)
warm_xp.append(cell_xp)
warm_y.append(cell_y)
warm_xc_arr = np.concatenate(warm_xc, axis=0)[:, :, np.newaxis]
if args.period_size > 0:
warm_xp_arr = np.concatenate(warm_xp, axis=0)[:, :, np.newaxis]
else:
warm_xp_arr = warm_xc_arr
warm_y_arr = np.concatenate(warm_y, axis=0)
warm_data = list(zip(*[warm_xc_arr, warm_xp_arr, warm_y_arr]))
warm_loader = DataLoader(warm_data, shuffle=False, batch_size=args.batch_size)
warm_criterion = torch.nn.MSELoss().to(device)
if args.opt == 'adam':
warm_opt = torch.optim.Adam(model.parameters(), lr=args.w_lr)
elif args.opt == 'sgd':
warm_opt = torch.optim.SGD(model.parameters(), lr=args.w_lr, momentum=args.momentum)
warm_scheduler = torch.optim.lr_scheduler.MultiStepLR(warm_opt, milestones=[0.5 * args.w_epoch,
0.75 * args.w_epoch],
gamma=0.1)
for epoch in range(args.w_epoch):
warm_epoch_loss = []
model.train()
for batch_idx, (xc, xp, y) in enumerate(warm_loader):
xc, xp, y = xc.float().to(device), xp.float().to(device), y.float().to(device)
model.zero_grad()
pred = model(xc, xp)
loss = warm_criterion(y, pred)
warm_epoch_loss.append(loss)
loss.backward()
warm_opt.step()
warm_scheduler.step()
return model.state_dict()
if __name__ == '__main__':
args = args_parser()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if not os.path.isdir(args.directory):
os.mkdir(args.directory)
data, df_ori, selected_cells, mean, std, lng, lat = get_data(args)
# print(selected_cells)
device = 'cuda' if args.gpu else 'cpu'
parameter_list = 'FedDualAtt-data-{:}-type-{:}-'.format(args.file, args.type)
parameter_list += 'rho-{:.3f}-cluster-{:}-lr-{:.4f}-'.format(args.rho, args.cluster, args.lr)
parameter_list += '-frac-{:.2f}-le-{:}-lb-{:}-epsilon-{:.2f}-seed-{:}-'.format(args.frac, args.local_epoch,
args.local_bs, args.epsilon,
args.seed)
parameter_list += 'warm_up:{:}'.format(args.warm_up)
log_id = args.directory + parameter_list
# print(args)
train, val, test = process_isolated(args, data)
# get the statistical mean of the traffic data
df = get_stat_mean(data)
# print(df_mean.head())
data_dist = pdist(df.values)
data_jfi = jfi(np.array(data_dist))
data_cv = cv(np.array(data_dist))
# print('jfi: {:.4f}, cv: {:.4f}'.format(data_jfi, data_cv))
# dual-stage iterative clustering
df['label'] = get_cluster_label(args, df, lng, lat)
global_model = LSTM(args).to(device)
# use this warm-up model as initialization
cluster_weights = defaultdict()
if args.warm_up:
warm_weights = copy.deepcopy(get_warm_model(selected_cells, log_id))
global_weights = copy.deepcopy(warm_weights)
global_model.load_state_dict(global_weights)
for label in df['label'].unique():
cluster_weights[label] = copy.deepcopy(warm_weights)
else:
warm_weights = copy.deepcopy(global_model.state_dict())
for label in df['label'].unique():
cluster_weights[label] = copy.deepcopy(warm_weights)
# training
best_val_loss = None
val_loss = []
val_acc = []
for epoch in tqdm.tqdm(range(args.epochs)):
local_weights, local_losses = defaultdict(list), defaultdict(list)
# print(f'\n Global Training Round: {epoch+1}|\n')
m = max(int(args.frac * args.bs), 1)
cell_idx = random.sample(selected_cells, m)
avg_loss = 0
for cell in cell_idx:
group_id = df.loc[cell]['label']
# print('Group ID:', group_id)
global_model.load_state_dict(global_weights)
cell_train, cell_test = train[cell], test[cell]
local_model = LocalUpdate(args, cell_train, cell_test)
w, loss, epoch_loss = local_model.update_weights(model=copy.deepcopy(global_model),
global_round=epoch)
avg_loss += loss
local_weights[group_id].append(copy.deepcopy(w))
local_losses[group_id].append(copy.deepcopy(loss))
# Update global model
local_cluster = defaultdict()
for group_id in local_weights.keys():
local_cluster[group_id] = avg_dual_att(local_weights[group_id], cluster_weights[group_id],
warm_weights,
args.epsilon, args.rho)
cw = []
for c_key, c_weights in local_cluster.items():
cw.append(c_weights)
global_weights = avg_dual_att(cw, global_weights, warm_weights, args.epsilon, args.rho)
# global_weights = average_weights(cw)
global_model.load_state_dict(global_weights)
pred, truth = defaultdict(), defaultdict()
test_loss_list = []
test_mse_list = []
nrmse = 0.0
global_model.load_state_dict(global_weights)
with torch.no_grad():
for cell in selected_cells:
cell_test = test[cell]
group_id = int(df.loc[cell]['label'])
test_loss, test_mse, test_nrmse, pred[cell], truth[cell] = test_inference(args, global_model, cell_test)
# print(f'Cell: {cell} MSE: {test_mse:.4f}')
nrmse += test_nrmse
test_loss_list.append(test_loss)
test_mse_list.append(test_mse)
df_pred = pd.DataFrame.from_dict(pred)
df_truth = pd.DataFrame.from_dict(truth)
mse = metrics.mean_squared_error(df_pred.values.ravel(), df_truth.values.ravel())
mae = metrics.mean_absolute_error(df_pred.values.ravel(), df_truth.values.ravel())
nrmse = nrmse / len(selected_cells)
print(
'FedDualAtt File: {:}, Type: {:}, BS: {:}, frac: {:.2f}, Cluster: {:}, rho: '
'{:.2f}, epsilon: {:.2f}, seed: {:}, lb: {:}, le: {:}, close: {:}, period: {:}, hidden: {:}, layers: {:},'
' lr: {:.4f}, w_lr: {:.4f}, '
'MSE: {:.4f}, MAE: {:.4f}, NRMSE: {:.4f}'.format(
args.file, args.type, args.bs, args.frac,
args.cluster, args.rho, args.epsilon,
args.seed, args.local_bs, args.local_epoch, args.close_size, args.period_size,
args.hidden_dim, args.phi, args.lr, args.w_lr,
mse, mae, nrmse))